о возбуждении поверхностных волн

И. А. Урусовский

Задача о возбуждении звуковых и электромагнитных волн, захватываемых замедляющей поверхностью и распространяющихся вдоль нее, подробно обсуждена в литературе. В частности, было рассмотрено возбуждение поверхностных волн на гребенчатой структуре, на диэлектрическом слое [1—6]. Аналогично проводится расчет возбуждения поверхностных воли и на упругой пластинке, которая также может

служить замедляющей поверхностью.

При экспериментальном изучении возбуждения поверхностных волн приходится измерять амплитуду поверхностной волны на фоне прямой волны и волны, отраженной от поверхности. Поэтому представляется целесообразным так видоизменить условия эксперимента, чтобы по возможности увеличить интенсивность исследуемой поверхностной волны по сравнению с фоном. Это можно достигнуть, если расположить источник между зеркалами, приставляемыми вплотную к замедляющей поверхности перпендикулярно к ней и образующими открытый резонатор, служащий ловушкой для поверхностных волн, захватываемых замедляющей поверхностью. Тогда источник будет «накачивать» энергию в поверхностные волны, которые образуют интенсивную стоячую волну вследствие многократных отражений от зеркал.

При каждом отражении часть энергии волны теряется (дифракционные потери на краю зеркала и потери на поглощение). Эти потери лимитируют получаемое увеличение интенсивности. Предельная амплитуда получаемых стоячих волн определится из условия динамического равновесия между «накачкой» энергии в поверхност-

ные волны и потерями.

Расчет усиления поверхностной волны при помощи такой ловушки мы проведем для гармонических звуковых и электромагнитных колебаний частоты ю, полагая, что все размеры резонатора велики по сравнению с длиной волны. Считаем, что дифракция на краю зеркал не вносит заметного вклада в возбуждение поверхностной волны. Так будет, например, при расположении источника над замедляющей поверхностью на достаточно малой высоте по сравнению с высотой зеркал *Н*.

Ограничимся рассмотрением плоской задачи (плоскость x, z) и будем подразумевать под полем p звуковое давление в акустическом случае и y-компоненту электрического или магнитного вектора в электромагнитном случае. Тогда расчет величины p оказывается одинаковым как для акустической, так и для электромагнитной задачи. В качестве замедляющей поверхности возьмем гребенчатую поверхность, расположенную в плоскости z=0, и зеркала расположим при x=l/2 и x=-l/2

В отсутствие зеркал вдоль такой поверхности могут распространяться поверхностные волны вида $p_1 = \exp(i\varkappa x - \gamma z)$ и $p_2 = \exp(-i\varkappa x - \gamma z)$, где $\gamma = \sqrt{\varkappa^2 - k^2}$, k — волновое число волн частоты ω в среде; Re, Im $k \geqslant 0$, Re, Im $\varkappa \geqslant 0$, Re $\gamma > 0$.

Временной множитель $\exp(-i\omega t)$ здесь и далее опускаем.

Источник возбуждает справа от себя волну Ap_1 , слева от себя — волну Bp_2 , где A и B — амплитуды поверхностных волн, зависящие от вида источника. Обозначим через R коэффициент отражения поверхностной волны от зеркал. При отражении волны p_1 от правого зеркала возникает отраженная волна p_2R exp $(i \ltimes l)$, а при отражении волны p_2 от левого зеркала — волна p_4R exp $(i \ltimes l)$. Последовательные отражения волн Ap_4 и Bp_2 образуют геометрическую прогрессию и в сумме дают следующее выражение для полного поля в резонаторе:

$$p = \left[\frac{A+B}{1-R\exp(i\varkappa l)} \cos\varkappa x + i \frac{A-B}{1+R\exp(i\varkappa l)} \sin\varkappa x \right] e^{-\gamma z}. \tag{1}$$

Отсюда видно, что при |R|, близких к единице, возможны интенсивные резонанс-

ные колебания, наступающие при $\arg R + \varkappa l \simeq n\pi$, где n — целое.

Определим в приближении Кирхгофа величину R, считая, что при отражении поверхностной волны от зеркала поле и нормальная производная поля на освещенной части зеркала такие же, как и в случае зеркала бесконечных размеров с аналогичными отражательными свойствами, характеризуемыми коэффициентом отражения R_{∞} , а за пределами зеркала в его плоскости поле и производная поля по x такие же, как и в падающей волне. Тогда коэффициент отражения R для поверхностной волны

$$R = R_{\infty} \left[1 - \frac{\varkappa}{2} \int_{H}^{\infty} C(z_0) e^{-\gamma z_0} dz_0 \right], \qquad (2)$$

где $C(z_0)$ — амплитуда поверхностной волны, возбуждаемой расположенным на высоте $z=z_0$ линейным источником, поле которого в свободном пространстве описывалось бы функцией $H_0^{(1)}(kr)$, где r — расстояние до источника. В рассматриваемом случае $C(z_0)=(4\gamma/\varkappa)$ ехр $(-\gamma z_0)$. Подставляя это значение функции $C(z_0)$ в фор-

мулу (2), находим $R = R_{\infty}[1 - \exp(-2\gamma H)]$. Отсюда и из выражения (1) видно, что при $|R_{\infty}|=1$, $\arg R_{\infty}+\varkappa l=2n\pi$ и A=B-амплитуда стоячей поверхностной волны в 2 ехр (2үН) раз превышает амплитуду волн, захватываемых гребенчатой поверхностью в отсутствие зеркал. Приведенный расчет для R справедлив при $\gamma / k \ll 1$ и $\exp (\gamma H) \gg 1$ — это наиболее интересный случай для рассматриваемой задачи. В рассматриваемом резонаторе могут быть также интенсивные однородные волны, как в обычном открытом резонаторе. С ростом Н дифракционные потери поверхностных волн уменьшаются по экспоненциальному закону, а дифракционные потери однородных волн — лишь по степенному закону, как в обычном открытом резонаторе с плоскими зеркалами [7]. Кроме того, увеличение расстояния между зеркалами приводит к росту дифракционных потерь для однородных волн. Таким образом, при достаточно больших γH или kl интенсивность поверхностных волн будет велика по сравнению с интенсивностью остальных волн, образующих «фон».

Если замедляющей поверхностью служит расположенный между зеркалами слой с иными акустическими или электрическими свойствами, чем в окружающей среде, то расчет коэффициента отражения R набегающей на зеркало какой-либо нормальной волны слоя проводится также по формуле (2) с той разницей, что теперь H —

расстояние от середины слоя до краев зеркала,

$$C(z_0) = \frac{4\gamma}{\kappa} e^{\gamma(2h-z_0)} \left[1 + \frac{\gamma^2}{\beta^2} + \gamma h \left(s + \frac{\gamma^2}{\beta^2 s} \right) \right]^{-1}, \tag{3}$$

где 2h — толщина слоя, $\beta = \sqrt{\kappa^2 - k_1^2}$, k_1 — волновое число слоя, s — отношение плотности окружающей среды к плотности среды в слое для акустической задачи или отношение диэлектрических либо магнитных проницаемостей указанных сред соответственно для горизонтальной или вертикальной поляризации нормальной волны в электромагнитном случае. Величина и удовлетворяет дисперсионным уравнениям $tg \, \beta h = \gamma / (\beta s)$ или $tg \, \beta h = -\beta s / \gamma$ соответственно для симметричных или антисимметричных по г нормальных волн. Подставляя выражение (3) в правую часть формулы (2) и интегрируя, получаем

$$R = R_{\infty} \left\{ 1 - e^{-2\gamma(H-h)} \left[1 + \frac{\gamma^2}{\beta^2} + \gamma h \left(s + \frac{\gamma^2}{\beta^2 s} \right) \right]^{-1} \right\}.$$

Подстановка найденных значений R в формулу (1) дает выражение соответственно для симметричных или антисимметричных частей поля, если считать, что в отсутствие зеркала возбуждаются симметричные или антисимметричные нормальные волны, имеющие при z > h вид Ap_1 и Bp_2 .

Полученные результаты справедливы и в трехмерной задаче, когда размер указанных резонаторов в направлении оси у велик по сравнению с высотой зеркал.

ЛИТЕРАТУРА

1. Л. А. Вайнштейн. Электромагнитные волны. М., Сов. радио, 1957.

2. Л. М. Бреховских. Поверхностные волны в акустике. Акуст. ж., 1959, 5, 1,

3. М. Д. Хаскинд. Распространение звуковых и электромагнитных волн в полупространстве. Акуст. ж., 1959, 5, 4, 464-471.

4. Гуань Дин-хуа. К теории возбуждения поверхностных звуковых волн. Акуст.

ж., 1961, 7, 2, 181—184.

5. М. Д. Хаскинд. Возбуждение поверхностных электромагнитных воли на плоских диэлектрических покрытиях. Радиотехн. и электрон., 1960, 5, 2, 188-197.

6. М. Д. Хаскинд. О возбуждении волн над плоской гребенчатой структурой. Акуст. ж., 1961, 7, 3, 366—369.

7. Л. А. Вайнштейн. Дифракция в открытых резонаторах и открытых волноводах с плоскими зеркалами. Ж. техн. физ., 1964, 34, 2, 193-204.

Акустический институт АН СССР Москва

Поступило в редакцию 28 мая 1965 г.