
$\frac{\sigma_0}{2\pi f_{
m p} \epsilon} <$ 1. При $\frac{\sigma_0}{2\pi f_{
m p} \epsilon} >$ 1 полоса пропускания увеличивается. Резонансная часто-

та преобразователей не совпадает со средней частотой, а именно $f_{\rm p} < f_{\rm c\,p}$. Полоса пропускания располагается относительно $f_{\rm p}$ таким образом, что при $\frac{\sigma_0}{2\pi f_{\rm p} \epsilon} < 1$ раз-

ность $f_{\rm p}-f_{\rm min}$ составляет 40% полосы пропускания, $f_{\rm max}-f_{\rm p}-60$ %. При $\frac{\sigma_0}{2\pi f_p \varepsilon}>$

> 1 несимметрия полосы пропускания увеличивается.

На фиг. 4 представлены кривые зависимости f_p от $\rho_0 = \sigma_0^{-1}$ для трех значений α . Кривая I соответствует α_1 , кривая $2-\alpha_2$, кривая $3-\alpha_3$. На фиг. 5 представлены кривые зависимости минимальных потерь преобразования от f_p для трех значений α . Как и для фиг. 4, номер кривой соответствует индексу при α .

Фиг. 4 и 5 могут служить для приближенной оценки K и f_p по известным ρ_0 и α методом интерполяции в исследованном интервале ρ_0 и α . Автор благодарен Н. К. Клюевой за составление программ для ЭВМ.

ЛИТЕРАТУРА

1. Ю. Е. Невский. Амплитудно-частотная характеристика ультразвуковых преобразователей типа обедненных слоев. Акуст. ж., 1969, 15, 1, 108—111.

Новосибирск

Поступило в редакцию 29 января 1969 г.

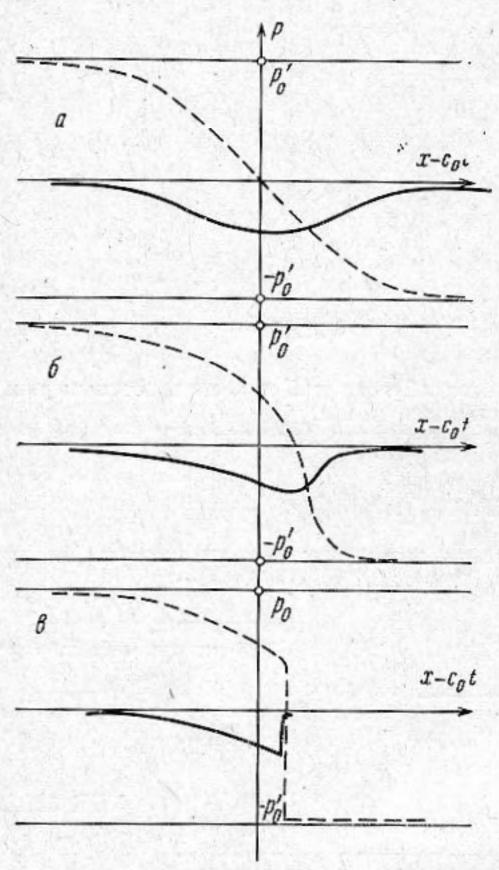
УДК 534.222

РАСПРОСТРАНЕНИЕ ВОЛН КОНЕЧНОЙ АМПЛИТУДЫ В ИДЕАЛЬНОМ ДИССОЦИИРУЮЩЕМ ГАЗЕ

О. В. Руденко, С. И. Солуян

Рассматриваемый в настоящей работе идеальный диссоциирующий газ представляет собой газ с симметричными молекулами, состоящими из двух нейтральных атомов, связанных гомополярными валентными силами. Процесс диссоциации молекул на два атома и обратный процесс рекомбинации происходят в результате соударения с третьей частицей. Степень диссоциации характеризуется параметром С — массовой концентрацией атомов в смеси атомов и молекул.

Полная система нелинейных уравнений, описывающих распространение воли конечной амплитуды в идеальном диссоциирующем газе, состоит из уравнения движения, уравнения неразрывнести, уравнения сохранения атомарной компоненты и уравнения состояния [1]. В монографии Кларка и Макчесни [1] дана линейная теория распространения звука в диссоциирующем газе. Сохраняя в исходных уравнениях нелинейные члены до второго порядка малости включительно [2] и используя факт медленного искажения профиля волны при ее распространении в среде, после


перехода к сопровождающей системе координат $y=t-\frac{x}{c_{\infty}},\ z=\mu x$, получим

$$\tau \frac{\partial}{\partial y} \left[\frac{\partial u}{\partial z} - \frac{1}{c_{\infty}^2} u \frac{\partial u}{\partial y} \right] + \left[\frac{\partial u}{\partial z} - \frac{1}{c_{\infty}^2} u \frac{\partial u}{\partial y} \right] + \frac{1}{2} \lambda_0 c_{\infty} \sigma_0 \rho_0 \frac{\partial u}{\partial y} = 0. \tag{1}$$

При выводе уравнения (1) принято, что отношение (u/c_∞) является малой величиной первого порядка малости $(\sim \mu)$. Здесь u—гидродинамическая скорость,

$$c_{\infty} = \sqrt{\frac{4 + C_0}{3} \frac{p_0}{\rho_0}}$$
 — «замороженная» скорость звука, p_0 , ρ_0 , C_0 — невозмущенные

значения соответственно давления, плотности и массовой концентрации атомарной

компоненты, τ — постоянная величина, имеющая смысл подходяще выбранного среднего времени релаксации. Коэффициенты λ₀ и σ₀ также являются постоянными величинами, причем

$$\lambda_0 = \left(\frac{\partial C_0}{\partial p}\right)_s,\tag{2}$$

$$\sigma_0 = (D'+1)(4+C_0)^{-1}-(1+C_0)^{-1}$$

где D' — безразмерная величина, связанная с энергией диссоциации на единицу массы. Коэффициент λ₀ характеризует дисперсионные свойства среды и, как нетрудно показать, является малой величиной первого

порядка малости.

В процессе вывода уравнения (1) из исходной системы уравнений были исключены такие характеристики бегущей волны как приращение концентрации атомарной компоненты C', возмущение давления р' и возмущение плотности р'. Для сопоставления результатов настоящего исследования с работами по распространению воли конечной амплитуды в релаксирующей среде [3, 4] следует привести упрощенное уравнение реакции — или уравнение сохранения атомарной компоненты, использованное при выводе уравнения (1). Оно имеет вид

$$\frac{\partial C'}{\partial y} + \lambda_0 \frac{\partial p'}{\partial y} + \frac{C'}{\tau} = 0.$$
 (3)

В работе [3] было развито два подхода к исследованию релаксационных процессов: один, по существу, на основе уравнения реакции (3), другой на основе другого уравнения (формула (21) работы [3]), учитывающего изменение равновесного параметра в бегущей волне. Стационарные решения при этом оказались одинаковыми.

Релаксационный параметр в работе [3] не исследовался как по причине трудностей математического характера, так и в силу отсутствия наглядной физической интерпретации такого рода исследования. Опуская вычисления, приведем формулу, описывающую профиль возмущения массовой концентрации атомов в смеси атомов и молекул в случае распространения стационарного «скачка» давления в идеальном диссоциирующем газе

$$C' = -\frac{3p_0'^2}{(4+C_0)\sigma_0 p_0^2} [1-(p'/p_0')^2]. \tag{4}$$

Здесь p_0' — «амплитудное» значение давления в скачке. Решение (4) представлено на фигуре сплошными линиями. Пунктирными линиями отмечены соответствующие профили давления. Различие профилей связано с произвольным соотношением между дисперсными и нелинейными свойствами среды: а соответствует относительно слабому проявлению нелинейных свойств, в - сильному, когда нелинейность приводит к образованию разрывного скачка, б соответствует промежуточному случаю. Параметр, аналогичный параметру k работ [3, 4] в данном случае равен p_0' (4 + C_0) λ_0 / $6p_0$.

Рассмотрение периодических возмущений в релаксирующей среде проводилось лишь на основе уравнения реакции (21) работы [3]. Поэтому в этой части имеется существенное отличие от результатов работы [4]. Для возмущений, частота которых такова, что $\omega \tau \gg 1$, в работе [4] нелинейные искажения определялись характерным приведенным расстоянием Z. Параметр Z благодаря нелинейной зависимости от расстояния х (расстояние от излучателя) имел характерную область насыщения и для формирования разрывных профилей амплитудное значение начального возмущения скорости должно было превышать некоторое пороговое значение икр. В рассмотренной задаче предельный переход ωτ ≥ 1 соответствует римановскому недиссипативному решению, так что разрывы формируются при любых начальных возмущениях на входе системы. Аналогичное явление имеет место и в другом предельном случае ωт≪1. При этом скорость распространения возмущений равна равновесной скорости звука $c_0 = c_\infty \ (1 - \frac{1}{2} \ \lambda_0 \sigma_0 \rho_0 c_\infty^2)$.

Таким образом, все особенности приведенного рассмотрения распространения волн конечной амплитуды в идеальном диссоциирующем газе связаны с конкретизацией уравнения реакции для данной среды. Развитый в монографии [1] общий подход к диссоциирующим средам позволяет исследовать более широкий класс нелинейных волновых процессов, выходящий за рамки принятых в нелинейной акустике приближений.

Авторы выражают благодарность Р. В. Хохлову за полезные дискуссии по предмету настоящего сообщения.

ЛИТЕРАТУРА

1. Дж. Кларк, М. Макчесни. Динамика реальных газов. М., «Мир», 1967. 2. С. И. Солуян, Р. В. Хохлов. Распространение акустических волн конечной амплитуды в диссипативной среде. Вестн. МГУ, 1961, 3, 52-61.

3. А. Л. Полякова, С. И. Солуян, Р. В. Хохлов. К вопросу о распространении конечных возмущений в релаксирующей среде. Акуст. ж., 1962, 8, 1, 107—112.
4. С. И. Солуян, Р. В. Хохлов. Акустические волны конечной амплитуды в среде с релаксацией. Акуст. ж., 1962, 8, 2, 220—227.

Московский государственный университет

Поступило в редакцию 9 июня 1969 г.