О ВЫРОЖДЕННОМ ПАРАМЕТРИЧЕСКОМ УСИЛЕНИИ ЗВУКА

В. К. Новиков, О. В. Руденко

С достоверностью установлено, что в нелинейной среде без дисперсии нельзя получить значительное усиление волны, пригодное для практических делей. В области до образования разрыва этот вопрос выяснен в теории электромагнитных линий передачи и обстоятельно изложен в работе [1]. Имеет смысл, однако, обсудить его применительно к интенсивному звуку, учитывая специфику задачи и пользуясь математическими приемами, традиционными для нелинейной акустики.

Ограничимся аналитическим рассмотрением вырожденного процесса, когда при x=0 колебательная скорость v задана в виде суммы мощной волны накачки $A_{\rm H}$ с

частотой ю и слабого сигнала А с с частотой ю/2 *.

(1)
$$v(x=0, t) = A_{\rm H} \sin \omega t + A_{\rm c} \sin (1/2\omega t + \varphi)$$
.

Аналогичная частная задача решена в [2] графическим способом. Величину $\beta = -A_c/A_H$ мы будем считать малым параметром и сохранять члены по β не выше, чем в первой степени.

В области до образования разрыва для больших чисел Рейнольдса правомерно использовать решение в виде простой волны. Компоненту Фурье на частоте ω/2 с

помощью ряда стандартных упрощений удается выразить формулой

(2)
$$v(\sigma, \omega/2) = \frac{A_{\rm H}}{i\pi\sigma} \int_{0}^{2\pi} \exp\left\{-\frac{i}{2} \left[\xi - \sigma\sin\xi - \beta\sigma\sin\left(\frac{\xi}{2} + \varphi\right)\right]\right\} d\xi.$$

Здесь σ — безразмерная координата; σ =1 отвечает длине образования разрыва. Вычисление интеграла (2) в принятом приближении приводит к простому выражению для коэффициента усиления сигнала $k=|v(\sigma,\omega/2)|/A_c$:

(3)
$$k[I_0^2(\sigma/2) - 2I_0(\sigma/2)I_1(\sigma/2)\cos 2\varphi + I_1^2(\sigma/2)]^{1/2}$$

В соответствии с [2, 3] результат (3) указывает оптимальный сдвиг фаз $\phi = \pi/2$, при котором к моменту образования разрыва усиление равно $k_{\text{max}} = I_0(0,\hat{5}) + I_1(0,5) \approx 1,18$.

При $\sigma>1$ профиль волны описывается сложной функцией и найти амплитуду субгармоники простым способом не удается. Однако при больших σ (практически для $\sigma>3$) достаточно знать линейную аппроксимацию (1) в окрестность точек $\omega t=\pm\pi$

(4)
$$v(0, \omega t = \pm \pi) \simeq -A_1(1-0.5\beta) (\omega t \pm \pi)$$
.

В сопровождающей системе координат при $\sigma>1$ точки $\omega\tau=\pm\pi$ остаются неподвижными, а фронт волны движется [2]. Изменение пиковых значений $V_{1,2}$ и безразмерных длительностей $T_{1,2}$ положительного и отрицательного полупериодов нетрудно установить с помощью (4) и правила «равенства площадей». Эти величины равны:

(5)
$$V_{1,2} = \pm A_1 \left(\frac{\pi}{1+\sigma} \pm \frac{2}{\pi} \beta \right); \quad T_{1,2} = \pi \pm \frac{2}{\pi} (1+\sigma) \beta.$$

Продолжая несимметричную «пилу» с параметрами (5) нечетным образом относительно $\omega \tau = -\pi$ и вычисляя фурье-компоненту субгармоники, можно получить для коэффициента усиления известное выражение $k = 4/\pi$ [1]. Замечательно, что k не зависит от σ . Разумеется, это явилось следствием сделанных приближений (бесконечно большие числа Рейнольдса Re, малость параметра β). В реальной ситуации, близкой к рассмотренному здесь идеализированному случаю, должна наблюдаться область квазистационарного усиления — «плато» функции k(x).

На завершающем этапе распространения волны, когда в игру вступают диссипативные процессы, из общего решения уравнения Бюргерса для (1) следует, что

(6)
$$k = \left[1 + \frac{I_1(\varepsilon \text{Re})}{I_0(\varepsilon \text{Re})}\right] e^{-\delta \omega^2 x/4}$$

(здесь ε — нелинейный параметр, δ — коэффициент затухания), т. е. после прекращения взаимодействия волн функция k(x) «помнит» об усилении — кривая (6) при ε Re \gg 1 проходит в 2 раза выше соответствующей кривой для линейной задачи.

^{*} Используя предлагаемый метод, можно показать, что для сигналов $\omega/3$, $\omega/4...$ и т. д. усиление вообще невозможно.

В заключение обсудим различие выводов этой работы и результатов, полученных в [3]. Принято считать, что главным препятствием для получения больших коэффициентов усиления в акустике является энергетическое истощение волны накачки из-за образования разрывов. В работе [3] произведен учет этих потерь и показано, что коэффициент усиления слабых сигналов может быть порядка $\sqrt{2}$ є Селико есть другой механизм, ограничивающий усиление и состоящий в множественном рождении волн с полуцелыми частотами, эффективно перекачивающих энергию волны $\omega/2$ вверх по спектру. Расчет настоящей работы учитывает эти процессы автоматически, однако имеет смысл подчеркнуть их роль, пользуясь спектральным подходом.

Укороченные уравнения, обобщающие расчет [3], имеют вид

(7)
$$\frac{dA_{1/2}}{d\sigma} = -\frac{1}{4}A_1A_{1/2}^* - \frac{1}{4}\sum_{n=1}^{\infty} (A_nA_{n+1/2} + A_{n+1}A_{n+1/2}^*) - \frac{\Gamma}{4}A_{1/2}^*,$$

(8)
$$\frac{dA_{n+1/2}}{d\sigma} = \frac{2n+1}{4} \left(A_n A_{1/2} - A_{n+1} A_{1/2}^* \right) - \frac{\Gamma}{4} (2n+1)^2 A_{n+1/2}.$$

Здесь $A_n(\sigma)$ — известные выражения для амплитуд гармоник волны накачки, $A_{n+\frac{1}{2}}(\sigma)$ — комплексные амплитуды волн с частотами $(n+\frac{1}{2})\omega$. В работе [3] все $A_{n+\frac{1}{2}}$ считались равными нулю. При оптимальном начальном сдвиге фаз и $\mathrm{Re} \to \infty$, принимая $A_n = 2/n(1+\sigma)$, можно легко свести систему (7), (8) к уравнению второго порядка для $|A_{\frac{1}{2}}|$. Анализ этого уравнения показывает, что учет суммы в правой части (7) дает вклад, противоположный по знаку и сравнимый с вкладом первого члена. Характер поведения k(x) становится иным: монотонный рост заменяется более сложной немонотонной функцией. Таким образом, процессы отбора энергии субгармоники $\omega/2+n\omega\to(n+\frac{1}{2})\omega$ способны конкурировать с параметрическим процессом и значительно понижать предельные коэффициенты усиления. Этот факт указывает на то, что для создания параметрических усилителей в акустике нужно не только препятствовать образованию разрывов, но и обеспечить прежде всего расстройку скоростей на полуцелых частотах.

Примером систем, для которых отсутствует дисперсия на кратных частотах $n\omega$, но имеется сильная дисперсия в остальной области ω , могут служить среды с периодической пространственной модуляцией свойств [4]. К таким системам приложимы

полученные в [3] теоретические оценки.

ЛИТЕРАТУРА

1. R. Landauer. Parametric amplification along nonlinear transmission Lines. J. Appl. Phys., 1960, 31, 3, 479-484.

 О. В. Руденко. О параметрическом взаимодействии бегущих звуковых волн. Акуст. ж., 1974, 20, 1, 108—111.

3. Г. А. Ляхов, О. В. Руденко. Об эффекте параметрического усиления слабых сигналов в нелинейной акустике. Акуст. ж., 1974, 20, 5, 738—744.
4. Л. М. Бреховских. Волны в слоистых средах. М., «Наука», 1973.

Московский институт народного хозяйства им. Г. В. Плеханова

Поступила 3 сентября 1975 г.

УДК 534.83

ОБ АКТИВНОМ ГАШЕНИИ ИЗГИБНЫХ КОЛЕБАНИЙ СТЕРЖНЕЙ И ПЛАСТИН

В. Ю. Приходько

Уравнение движения пластины без учета эффекта сдвига и инерции вращения имеет вид

(1)
$$\Delta^2 u - k^4 u = 0, \quad \Delta^2 = \frac{\partial^4}{\partial x_1^4} + 2 \frac{\partial^4}{\partial x_1^2 \partial x_2^2} + \frac{\partial^4}{\partial x_2^4},$$

. где u — смещение пластины, $k=\sqrt[4]{\rho h\omega^2/D}$ — волновое число, h — толщина, ρ — плотность, D — цилиндрическая жесткость пластины. Временной множитель $\exp(-i\omega t)$ всюду опускаем. Для оператора (1) в области В бесконечной пластины справедлива