Tom XXVIII

1982

Вып. 5

УДК 534.26

О КОРНЯХ ДИСПЕРСИОННОГО УРАВНЕНИЯ ИЗГИБНЫХ КОЛЕБАНИЙ ПЛАСТИНЫ

Журавлева А.А., Иванов В.С., Кирпичников В.Ю.

Приведены результаты расчета корней дисперсионного уравнения изгибных колебаний стальной пластины с поправкой Тимошенко — Миндлина в акустической среде и исследованы особенности поведения этих корней с изменением реакции среды и частоты. Полученные результаты могут быть использованы при проведении расчетов уровней звуковых давлений в среде, а также уровней вибраций пластины.

Дисперсионное уравнение изгибных колебаний пластины с учетом реакции акустической среды, а также сдвига и инерции вращения ее поперечных сечений может быть записано в форме

(1)
$$(\kappa^4 - d_1 \kappa^2 + d_2 - \beta^2) \sqrt{\kappa^2 - 1} = b\beta^3 (1 + d_3 \kappa^2 - d_4),$$

где d_1 , d_2 , d_3 , b — безразмерные коэффициенты, зависящие от свойств материала пластины и акустической среды, $d_4 = [k_{\rm n}^2 + (k_{\rm c}/k_1)^2]/k_0^2$; $d_2 = k_{\rm n}^2 k_{\rm c}^2/k_1^2 k_0^4$; $d_3 = k_0^2 a$; $b = \rho_0 c_{\rm n}/2\rho c_0 \sqrt{3}$, $(k_{\rm n}, k_{\rm c}, k_0$ — волновые числа продольных и сдвиговых колебаний пластины, а также звука в среде; ρ , ρ_0 — плотность материала пластины и среды; $c_{\rm n}$, c_0 — скорости распространения продольных волн в пластине и звука в среде; k_1 — корень уравнения $4\sqrt{(1-k_1^2\alpha)} \times \sqrt{(1-k_1^2)} = (2-k_1^2)^2$; $\alpha = (1-2\sigma)/2(1-\sigma)$; $a = h^2/6k_1^2(1-\sigma)$; h — толщина пластины; σ — коэффициент Пуассона); d_4 — безразмерный коэффициент, зависящий от свойств только материала пластины; $d_4 = k_{\rm n}^2 a = d_2/\beta^2$; ρ — безразмерная частота; $\rho = f_{\rm rp}/f$ ($f_{\rm rp}$ — граничная частота).

Если пренебречь сдвигом и инерцией вращения поперечных сечений пластины $d_1=d_2=d_3=d_4=0$, что справедливо при $\beta\gg 1$, то уравнение (1) можно преобразовать к виду

(2)
$$(\varkappa^4 - \beta^2) \sqrt{\varkappa^2 - 1} = b\beta^3.$$

Корни $\varkappa=k/k_0$ уравнений (1) и (2) характеризуют волновые числа изгибных колебаний пластины с учетом реакции среды. Они необходимы при решении задач по определению как уровней изгибных колебаний пластины [1], так и уровней звуковых давлений, формируемых в среде этими колебаниями [2]. Значения корней уравнения (2), справедливого в пределах применимости элементарной теории изгиба пластин, вычислялись под руководством В. Ю. Завадского [2], а также были затабулированы В. Н. Евсеевым и В. Т. Ляпуновым для наиболее характерных сочетаний параметров пластины и акустической среды [1]. Анализ корней дисперсионного уравнения типа уравнения (1) выполнялся, в частности, в работе [3].

Ниже приводятся результаты сопоставления численных значений корней уравнения (1) с корнями уравнения (2), приведенными, например, в работе [1]. Уравнения (1) и (2) являются уравнениями десятого порядка. В общем случае они имеют пару вещественных $\varkappa_{1,2}=\pm a_0$ и четыре пары комплексных корней $\varkappa_{3,4,5,6}=\pm a_1\pm ib_1;$ $\varkappa_{7,8,9,10}=\pm a_2\pm ib_2$. Вещественные корни характеризуют изгибные волны, распространяющиеся по пластине без затухания. По своей природе последние близки к однородным волнам, которые возникают в пластине, колеблющейся в вакууме. Комплексные корни характеризуют затухающие изгибные волны. Две пары этих корней соответствуют неоднородным волнам, возникающим в пластине, кото-

β	b=0,26					b=0,13				
	a ₀	a_1	a_2	b ₁	b ₂	a ₀	a ₁	a_2	bi	b_2
0	1	0,51	0,28	0	0	1	0,51	0,28	0	0
0,125	1,00	0,60	0,18	0,02	0,01	1,00	0,60	0,18	0,01	0,01
0,25	1,00	0,68	0,00	0,02	0,28	1,00	0,68	0,00	0,01	0,28
0,5	1,01	0,84	0,01	0,06	0,56	1,00	0,84	0,01	0,03	0,56
1	1,20	1,00	0,04	0,14	0,90	1,16	1,02	0,02	0,08	0,90
2	1,62	1,20	0,09	0,19	1,36	1,56	1,35 1,06	0,05	0,00	1,35
4	2,28	1,54	0,21	0,34	2,00	2,18	1,84 1,16	0,11	0,00	1,97
16	4,73	3,16	0,73	1,48	4,32	4,44	2,78	0,45	0,33	4,10
64	10,2	7,25	2,12	4,36	9,46	9,40	6,21	1,48	2,94	8,69

рая колеблется в вакууме (ж7,8,9,10), появление двух других пар корней

(жз.4.5.6) обусловлено взаимодействием пластины и среды.

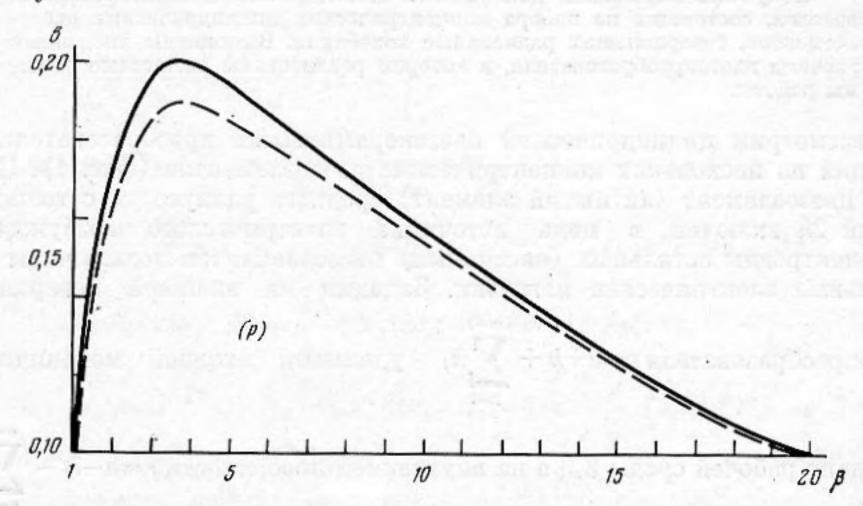
нем контакте пластины с водой.

В таблице приведены численные значения величин a_0 , a_1 , b_1 , a_2 и b_2 , полученных при решении уравнения (1) для случаев колебания стальной пластины в воде (b=0,26) и на ее поверхности (b=0,13). Расчеты выполнены для ряда значений безразмерной частоты β , ограниченной сверху величиной β =0,125, для которой уравнение (1) приближенно еще можно считать справедливым. Значения величин a_i (i=0, 1, 2) при β →0 получены с использованием формул работы [3].

На низких частотах (при $\beta \lesssim 32$) ввиду малого влияния сдвига и инерции вращения на изгибные колебания пластины, значения величин a_i , b_j (j=1, 2) для уравнений (1) и (2) оказались практически одинаковыми: $|a_i^{(1)}-a_i^{(2)}|/|a_i^{(1)}|=\delta_i<0.01$; $|b_j^{(1)}-b_j^{(2)}|/|b_j^{(1)}|=s_j<0.01$. В диапазоне 1< $<\beta<32$ учет сдвига и инерции вращения привел к увеличению a_0 и a_1 , а также к уменьшению a_2 , максимальным при $\beta=1$ ($\delta_{0\max}=0.07$; $\delta_{1\max}=0.05$ при b=0.13 и b=0.26; $\delta_{2\max}=1.31$ при b=0.13 и $\delta_{2\max}=0.16$ при b=0.26). На величину b_1 сдвиг и инерция вращения заметного влияния не оказали. Величина b_2 изменилась практически лишь при $\beta \lesssim 4$. Максимальное ее уменьшение, наблюдаемое на граничной частоте ($\beta=1$), характеризуется коэффициентом $s_{2\max}=0.11$ как при одностороннем, так и при двухсторон-

В связи с большим интересом, проявляемым в ряде зарубежных работ (см., например, [3]) к диапазону частот, в котором при определенных сочетаниях параметров пластины и акустической среды у уравнений (1) и (2) появляется не одна, а три пары вещественных корней, были конкретизированы границы этого диапазона для стальной пластины при различных значениях параметра b. Сплошная и пунктирная кривые на фигуре получены с использованием уравнений (1) и (2) соответственно. Обращаясь к фигуре, видим, что учет сдвига и инерции вращения несколько расширил область (р) значений b и β, в которой комплексные корни из,4,5,6 становятся вещественными. В указанной области имеет место такое взаимодействие изгибных волн, соответствующих этим корням, с акустической средой, при котором поток колебательной энергии из среды в пластину компенсирует колебательные процессы в пластине. Формально изгибные волны, описываемые корнями ж3,4,5,6, становятся при этом неизлучающими на большие расстояния от пластины, а величина b_1 оказывается равной 0. В диапазоне закритических частот (β <1) корни уравнения (1) сопоставлялись с корнями дисперсионного уравнения изгибных колебаний стальной пластины в вакууме. Оказалось, что реакция акустической среды

изменяет характер колебательных процессов в стальной пластине. Например, при колебаниях пластины в вакууме на частоте, где половина длины сдвиговой волны равняется толщине $(k_{\pi}^2 a = 1)$, в отличие от других частот, в пластине существуют лишь бегущие изгибные волны. Такого явления при колебаниях стальной пластины в воде не наблюдается. Вместе с тем в последнем случае вместо волны и7,8,9,10, затухающей при распространении вдоль пластины $(a_2 \neq 0, b_2 \neq 0)$, в диапазоне закритических частот вблизи частоты $\beta = 0.25$ возникает неоднородная изгибная волна ($a_2 = 0$). Ее особенность состоит в том, что она, затухая вдоль пластины, формирует звуковую волну, распространяющуюся в направлении нормали к пластине без затухания.



Область (р) значений b и β для стальной пластины, в которой уравнения (1) и (2) имеют три пары вещественных корней

ЛИТЕРАТУРА

1. Ляпунов В. Т., Никифоров А. С. Виброизоляция в судовых конструкциях. Л.: Судостроение, 1975.

2. Коузов Д. П. Дифракция плоской гидроакустической волны на трещине в упру-

гой пластине.— Прикл. матем. и механика, 1963, т. 27, № 6, с. 1037-1043.

3. Pierucci M., Graham T. S. A study of bending waves in fluid-loaded thick plates.— J. Acoust. Soc. Amer., 1979, v. 65, № 5, p. 1190-1197.

> Поступила в редакцию 25.V.1981