Tom XXVIII

1982

Вып. 5

УДК 534.213

ЭКСПЕРИМЕНТАЛЬНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ СВОЙСТВ ГАЗОВЫХ ПОТОКОВ

Лебединский Е.В., Натанзон М.С., Никифоров М.В.

В работе рассмотрена методика прямого экспериментального определения амплитудно-фазовой характеристики газового потока в канале переменного сечения, показана связь этой характеристики с входным импедансом, даны примеры практического применения метода.

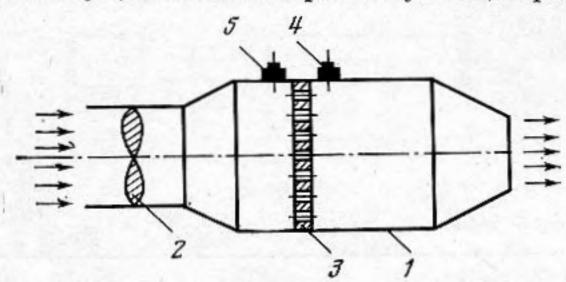
Рассмотрим поток газа в канале переменного сечения с наложенными на него малыми гармоническими возмущениями параметров. Если на правом (по потоку) конце канала задано то или иное граничное условие, то определенный во входном сечении канала импеданс z (или соответствующая величина проводимости) будет характеризовать условия прохождения и отражения акустических возмущений в такой системе [1]

(1)
$$z=P'/\bar{p}\bar{C}U'$$
.

Здесь $\bar{\rho}\bar{C}$ — волновое сопротивление среды, $P',\,U'$ — комплексные амплитуды пульсаций давления и осевой компоненты скорости во входном сечении канала.

Соотношение (1) при фиксированном z устанавливает линейную связь между пульсациями давления и скорости и характеризует канал как определенное динамическое (акустическое) звено. В работе ставилась задача создания экспериментальной методики определения входного импеданса для акустических систем с отличным от нуля стационарным потоком.

Для определения импеданса в экспериментальной акустике широко используется метод стоячих волн [1, 2]. В последнее время сделаны попытки [3, 4] обобщать и использовать этот метод для определения динамических свойств газовых потоков в каналах переменного сечения.


Прямое определение импеданса связано с измерением амплитуд гармонических пульсаций давления и скорости. Если измерение пульсаций давления в движущемся потоке не вызывает затруднений, то измерение пульсаций скорости — задача значительно более сложная.

В методе стоячих волн измерение амплитуды пульсаций скорости сведено к измерению распределения амплитуды пульсаций давления вдоль цилиндрической трубы, которая располагается для этих целей на входе в исследуемое акустическое звено. В работе [5] для измерения пульсаций скорости использовался термоанемометр. Как отмечают авторы работы [5], точность определения импеданса подобным методом невелика ввиду сильного влияния на показания анемометра не только гармонических возмущений, но и общей турбулентности потока. Что же касается метода стоячих волн, то здесь уместно подчеркнуть, что этот метод не применим для исследования тангенциальных и радиальных форм колебаний давления в канале в диапазоне докритических частот. Кроме того, он обладает определенной методической сложностью, связанной с организацией перемещающегося вдоль оси трубы датчика пульсаций давления и использованием номограмм для получения выходной информации об импедансе. Отмеченные недостатки обоих методов побудили авторов искать другие пути решения указанной экспериментальной задачи.

На фиг. 1 показана принципиальная схема проведения испытаний по методике, предлагаемой в данной работе. На этой схеме: 1— объект исследования (акустическое звено), допустим, канал переменного сечения с тем или иным видом граничного условия на его правом (по потоку) конце;

2 — источник гармонических возмущений в движущемся потоке (пульсатор); 3 — многодырчатая решетка со сверхкритическим перепадом давления, располагаемая на входе в исследуемое акустическое звено (ниже она называется методическая решетка); 4 — датчик пульсаций давления за решеткой (P_1') ; 5 — датчик пульсаций давления перед решеткой (P_2') .

В рассмотренной схеме проведения испытаний методическая решетка выполняет следующие функции: через нее создаваемые пульсатором возмущения подаются в исследуемое акустическое звено; она отделяет динамические свойства исследуемого объекта от акустических свойств потока до решетки в силу сверхкритического перепада давления на решетке [6]; решетка позволяет осуществлять измерение пульсаций расхода (скорости),

Фиг. 1. Принципиальная схема испытаний

вводимых в исследуемое звено, путем измерения пульсаций давления перед решеткой; используя решетки с различным характером расположения отверстий, можно возбуждать в исследуемом акустическом звене не только продольные, но и более высокие моды колебаний давления.

В процессе испытаний определялись модуль |N| и фаза φ_N отношения:

(2)
$$N = (P_1' \cdot \overline{P}_2) / (P_2' \overline{P}_1) = |N| \exp(i\varphi_N)$$

в зависимости от частоты вводимых возмущений f. Здесь \overline{P}_2 и \overline{P}_4 — соответственно средние значения давления до и после решетки сверхкритического перепада. Покажем, что характеристика N однозначно связана с входным импедансом z.

Будем считать, что длина волны анализируемых продольных колебаний много больше длины каналов решетки. Тогда, пренебрегая накоплением газа в каналах решетки, будем иметь

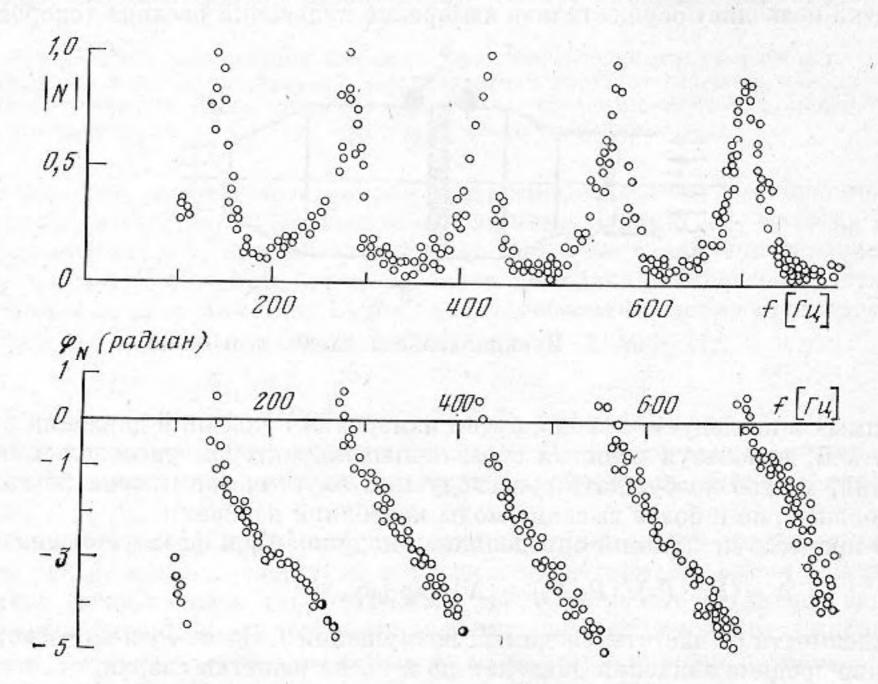
(3)
$$G_2 = G_1$$
 или $(\overline{G}_2 = \overline{G}_1; G_2' = G_1'),$

где $G=\rho U$ — плотность потока газа через решетку. По той же причине процесс истечения газа через каналы решетки можно считать квазистационарным [7], поэтому при сверхкритическом режиме истечения

(4)
$$G_2'/\overline{G}_2 = (\gamma+1)P_2'/2\gamma \overline{P}_2$$
,

у — показатель адиабаты. Таким образом, безразмерные пульсации плотности потока газа (в случае продольных колебаний расхода) пропорциональны безразмерным пульсациям давления перед решеткой. Используя (4)—(2), можно определить амплитудно-фазовую характеристику m:

(5)
$$m = P_1' \overline{G}_1 / \overline{P}_1 G_1' = |m| \exp(i\varphi_m) = 2\gamma N / (\gamma + 1).$$


Если считать процесс распространения акустических возмущений в исследуемом звене изэнтропическим, то

(6)
$$G_1'/\overline{G}_1 = (P_1'/\gamma \overline{P}_1) + (u_1'/\overline{u}_1) = P_1'(1+1/M_1z_1)/\gamma \overline{P}_1,$$

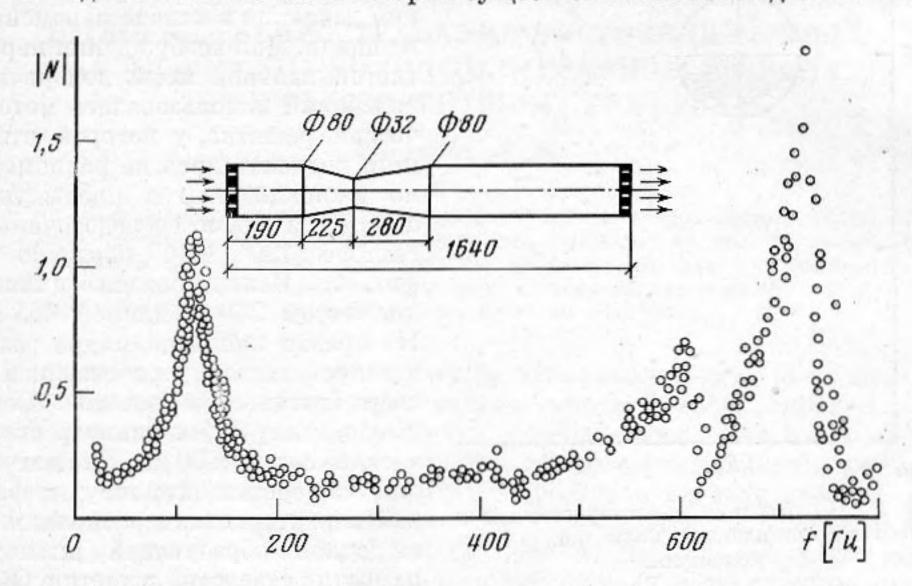
где M_1 и z_1 — соответственно среднее по сечению число Маха и импеданс на входе в исследуемое звено. Используя (5) и (6), получим $m=\gamma M_1 z_1/(1+M_1 z_1)$. В некоторых работах (например, [7]) вместо импеданса используют удельную акустическую проводимость $\alpha_1 = \bar{\rho}_1 u_1'/\bar{u}_1 \rho_1' = 1/M_1 z_1$. Тогда $m=\gamma/(1+\alpha_1)$. Для акустических систем с отличным от нуля вектором

стационарной скорости ($\bar{u}\neq 0$) наиболее удобной динамической характеристикой звена является комплексная величина m, представляющая собой отношение безразмерных пульсаций давления к безразмерным пульсациям расхода на входе в исследуемое звено. Как видим, эта характеристика, однозначно связанная со входным импедансем (или проводимостью), может непосредственно определяться в эксперименте через отношение безразмерных пульсаций давления за решеткой сверхкритического перепада и до нее.

Ниже излагаются четыре примера практического применения предложенного метода. Их цель показать, с одной стороны, возможности экспери-

Фиг. 2. Амплитудно-фазовая характеристика для потока в цилиндрической трубе

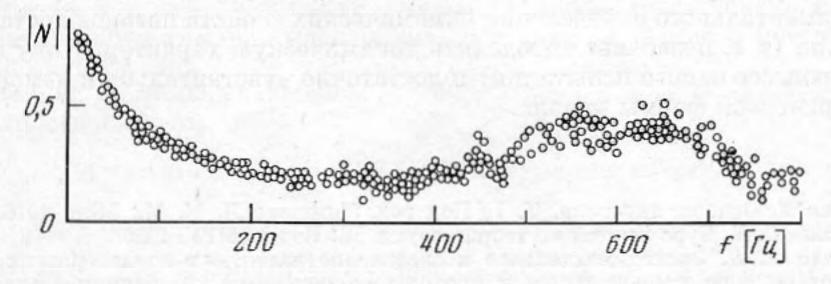
ментальной методики, а с другой — оценить, как влияет геометрия канала переменного сечения и режим течения газа в нем на динамические свойства потока.


Первый пример касается течения газа в цилиндрическом канале длиной 1640 и диаметром 80 мм, на правом (по потоку) конце которого располагалась решетка сверхкритического перепада (семь отверстий диаметром 10,7 мм).

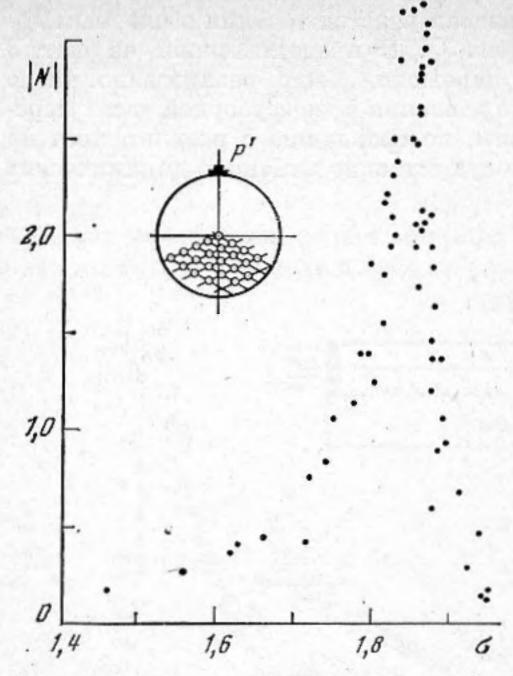
Для создания возмущений в потоке использовался пульсатор дроссельного типа с гармоническим изменением площади проходного сечения. Установка питалась воздухом, подогретым до температуры \overline{T} =550 K, что соответствовало скорости звука в трубе \overline{C} =470 м/с. Для определения амплитудно-фазовой характеристики N использовалась методическая решетка, имеющая семь отверстий диаметром 7,6 мм, длина канала решетки \approx 15 мм.

Исследовался случай плоских возмущений. Результаты экспериментов приведены на фиг. 2.

Полученные результаты подтверждают известные факты, что резонансные максимумы амплитудной характеристики |N| лежат вблизи собственных частот трубы, закрытой с обоих концов [6], а сами величины резонансных максимумов совпадают с расчетной величиной, равной единице (если считать, что процесс истечения через правую решетку близок к квазистационарному [7]). Таким образом, приведенный пример иллюстрирует удовлетворительное соответствие между теорией и экспериментом и подтверждает возможность использования гипотезы о квазистационарности как в теории, так и в методике эксперимента.


Второй пример показывает изменения динамических свойств потока, когда в цилиндрической трубе организован участок течения с плавным дозвуковым поджатием потока (см. фиг. 3). В представленной на фиг. 3 серии испытаний в узком сечении пережатия было реализовано число Маха ~0,47. Величина потерь полного давления в диффузорной части пережатия составляла ~0,45%. Как видим, по сравнению с результатами на фиг. 2 подобное изменение геометрии существенно изменило динамические

Фиг. 3. Амплитудная характеристика для потока в канале с дозвуковым пережатием сечения


свойства потока. Наблюдается увеличение резонансных максимумов |N| на частотах ≈ 120 и 725 Γ ц и практически полное исчезновение резонансных максимумов в диапазоне частот $200 \div 500$ Γ ц.

Отмеченные особенности процесса для канала с дозвуковым пережатием потока, по-видимому, объясняются наличием в этом случае волны, отраженной от диффузорной части пережатия (в цилиндрическом канале подобная волна отсутствует).

Фиг. 4. Амплитудная характеристика для потока в канале со сверхкритическим пережатием сечения

На фиг. 4 показана величина |N| для случая аналогичного тракта, когда в узком сечении потока был реализован сверхкритический режим течения. Наличие зоны звуковых скоростей в узком сечении канала приводит к тому, что динамические свойства потока до пережатия становятся независимыми от динамических свойств потока после пережатия [7]. Это хорошо видно из данных на фиг. 4. В исследованном диапазоне частот наблюдается лишь один небольшой резонансный максимум на частоте, близкой к собственной частоте столба газа от методической решетки до критического сечения. Небольшое значение величины резонансного максимума на фиг. 4 свидетельствует о хорошем выносе волновой энергии из

Фиг. 5. Амплитудная характеристика для первой тангенциальной моды поперечных колебаний

полости до пережатия вниз по потоку [8].

Результаты на фиг. 5 иллюстрируют возможность использовапредложенной эксперименния тальной методики для исследования тангенциальных форм колебаний давления в канале переменной площади. Для возбуждения первой тангенциальной моды поперечных колебаний использовалась методическая решетка, у которой отверстия располагались не равномерно по площади, как в предыдущих опытах, а были сосредоточены в 120°, как показано секторе фиг. 5. Использовался цилиндр диаметром 240 и длиной 485 мм. На правом конце цилиндра распоработающее лагалось сопло, сверхкритическом режиме. Сопло имело длину 175 и диаметр критического сечения 90 мм. Два датчика для измерения амплитудно-фазовой характеристики располагались на одной образующей цилиндра напротив отверстий решетки. Обработка результатов экспериментов

велась по безразмерной частоте $\sigma = \omega R/\overline{C}$, где R — радиус цилиндра.

Как видим, на частоте, близкой к критической (σ =1,84), наблюдается достаточно добротный резонансный максимум. Этот результат можно трактовать как значительное уменьшение выноса волновой энергии через сопло в случае тангенциальной моды колебаний по сравнению со случаем плоских возмущений (см. фиг. 4) [8]. Как особое достоинство экспериментальной методики можно отметить, что амплитудная характеристика |N| для этой формы колебаний хорошо определяется не только в диапазоне сверхкритических частот, но и в диапазоне докритических частот.

Итак, разобранные примеры показывают, что предлагаемая методика экспериментального определения динамических свойств потоков достаточно мобильна (т. е. позволяет определять динамическую характеристику системы в процессе одного испытания) и достаточно чувствительна к изменению геометрической формы канала.

ЛИТЕРАТУРА

- 1. Скучик Е. Основы акустики. Т. І / Под ред. Лямшева Л. М. М.: Мир, 1976.
- 2. Ржевкин С. Н. Курс лекций по теории звука. М.: Изд-во МГУ. 1960.
- Руденко А. Н. Экспериментальное исследование частотных характеристик сопел по отношению к продольным и продольно-поперечным колебаниям. – Акуст. ж., 1974, т. 20, № 6, с. 897–906.
- 4. Цинн Б. Т., Белл В. А., Даниэл Б. Р., Смит А. И. мл. Экспериментальное определение трехмерной акустической проводимости сопел ЖРД.— Ракетная техника и космонавтика, 1973, т. 11, № 3, с. 15—21.
- Крокко Л., Монти Р., Грэй И. Проверка теории расчета входного участка сопла прямым измерением входного параметра.— Ракетная техника и космонавтика, 1961, т. 31, № 6, с. 27-32.
- 6. Раушенбах Б. В. Вибрационное горение. М.: Физматгиз, 1961.
- 7. Крокко Л., Чжень Синьи. Теория неустойчивости горения в жидкостных ракетных двигателях / Под ред. Шаулова Ю. Х. М.: Изд-во иностр. лит., 1958.
- 8. Руденко А. Н., Шлыкова И. С., Эпштейн В. Л. Акустическая проводимость сверхзвуковых сопел с конической входной частью при продольных и продольно-поперечных колебаниях.— Акуст. ж., 1974, т. 20, № 4, с. 608—615.

Поступила в редакцию 2.VII.1981