Tom XXXI

1985

Вып. 5.

УДК 548.0:539.21

ОРИЕНТАЦИОННАЯ НЕУСТОЙЧИВОСТЬ НЕМАТИЧЕСКИХ ЖИДКИХ КРИСТАЛЛОВ В ОСЦИЛЛИРУЮЩЕМ СДВИГОВОМ ПОТОКЕ

Решетов В. Н.

Теоретически рассмотрена ориентационная неустойчивость нематического жидкого кристалла (НЖК) в осциллирующем сдвиговом потоке при произвольном угле ψ₀ между скоростью потока и исходной ориентацией молекул. Получена система уравнений, описывающая поведение НЖК, а также приближенные аналитические выражения для пороговых характеристик. Проведено качественное сравнение с имеющимися экспериментальными данными.

Ориентационная неустойчивость нематических жидких кристаллов (НЖК) в осциллирующем потоке носит пороговый характер и проявляется в виде образования характерной доменной структуры, зависящей от частоты осцилляций потока и взаимной ориентации скорости потока и

директора [1, 2].

Благодаря большой оптической анизотропии НЖК ($\Delta n/n=0,1\div0,3$) возникающие при неустойчивости периодические отклонения молекул от исходной ориентации приводят к возникновению оптической фазовой решетки [3, 4], параметры которой можно регулировать, изменяя характер и величину акустомеханического воздействия. Актуальность рассмотрения ориентационной неустойчивости связана также с необходимостью опре-

деления границ линейного режима работы ряда акустооптических устройств на

жидких кристаллах.

В данной работе представлены результаты теоретического исследования ориентационной неустойчивости планарно ориентированного образца НЖК в осциллирующем сдвиговом потоке при произвольном угле фо между скоростью потока и директором.

В работах [3—5] подробно и всесторонне изучена ситуация, когда исходная планарная ориентация директора и скорость потока ортогональны друг другу: $\psi_0 = \pi/2$. При этом возникает неустойчивость Гийона — Пьеранского, случай, когда директор \mathbf{n}_0 параллелен скорости потока, рассмотрен в работе [6].

В настоящее время также имеются данные о неустойчивости НЖК в осциллирующем и постоянном Пуазейлевом течении для случая планарно ориентированного образца и ортогонального расположения директора и скорости потока [7—8]. Кроме того, изучается неустойчивость гомеотропно ориентированных образцов

 V_y V_y

Фиг. 1. Геометрия задачи. Профиль скорости потока V_{x0} =0, \hat{V}_{y0} =S(t)z, V_{z0} =0, S(t) – градиент скорости, ω – частота осцилляций

НЖК, подвергнутых воздействию эллиптического сдвига, когда подложки, ограничивающие слой НЖК, двигаются в перпендикулярных направлениях с одинаковой частотой, но различной амплитудой и фазой [9—10].

Рассмотрим слой планарно ориентированного нематического жидкого кристалла с открытыми концами толщиной d, находящейся между плоскостями z=-d/2 и z=d/2. Директор n_0 лежит в плоскости слоя 0XY и

составляет угол ψ_0 с направлением потока (ось 0Y) (фиг. 1).

Путем линеаризации системы уравнений Эриксена — Лесли — Пароди [1, 2] получаем систему уравнений для величин отклонений директора в двух взаимно перпендикулярных направлениях θ_1 и ψ_1 , а также скоростей v_x , v_y , v_z . Здесь θ_1 — угол между отклоненным положением директора и плоскостью слоя 0XY, $\psi_1 = \psi - \psi_0$, где ψ — угол между проекцией \mathbf{n} на плоскость 0XY и осью 0Y.

$$(2\alpha_{1}\sin^{4}\psi_{0}+\alpha_{4}+(\alpha_{3}+\alpha_{6}+2\alpha_{5})\sin^{2}\psi_{0})v_{x,\,x,\,x}+\\+(\alpha_{4}+(\alpha_{3}+\alpha_{6})\sin^{2}\psi_{0})v_{x,\,z,\,z}+\sin\psi_{0}\cos\psi_{0}\cdot v_{y,\,x,\,x}+\\+(2\alpha_{1}\sin^{2}\psi_{0}+\alpha_{2}+\alpha_{3}+\alpha_{5}+\alpha_{6})+(\alpha_{3}+\alpha_{6})\sin\psi_{0}\cos\psi_{0}\cdot v_{y,\,z,\,z}+\\+2\alpha_{1}\sin^{2}\psi_{0}\cos\psi_{0}S(t)\theta_{1,\,x}+2\alpha_{3}\sin\psi_{0}\theta_{1,\,t,\,z}+2(\alpha_{2}+\alpha_{3})\\\cdot\sin\psi_{0}\cos\psi_{0}\psi_{1,\,t,\,x}+(\alpha_{3}+\alpha_{6})(\cos^{2}\psi_{0}-\sin^{2}\psi_{0})S(t)\psi_{1,\,z}=0,\\(2\alpha_{1}\sin^{2}\psi_{0}+\alpha_{3}+\alpha_{6})\sin\psi_{0}\cos\psi_{0}v_{x,\,x,\,x}+\sin\psi_{0}\cos\psi_{0}(\alpha_{3}+\alpha_{6})\\\cdot v_{x,\,z,\,z}+(2\alpha_{1}\sin^{2}\psi_{0}\cos^{2}\psi_{0}+\alpha_{4}+(\alpha_{5}-\alpha_{2})\sin^{2}\psi_{0}+(\alpha_{3}+\alpha_{5})\cos^{2}\psi_{0})v_{y,\,x,\,x}+\\+(\alpha_{4}+(\alpha_{3}+\alpha_{6})\cos^{2}\psi_{0})v_{y,\,z,\,z}+(2\alpha_{1}\cos^{2}\psi_{0}+\alpha_{5}-\alpha_{2})\sin\psi_{0}S(t)\theta_{1,\,x}+\\+2\alpha_{3}\cos\psi_{0}\theta_{1,\,t,\,z}+2(\alpha_{3}\cos^{2}\psi_{0}-\alpha_{2}\sin^{2}\psi_{0})\psi_{1,\,t,\,x}-\\-2(\alpha_{3}+\alpha_{6})\sin\psi_{0}\cos\psi_{0}S(t)\psi_{1,\,z}=0,$$
 (1)
$$\sin\psi_{0}\cos\psi_{0}(\alpha_{2}+\alpha_{5})v_{y,\,z,\,x}+(\alpha_{4}+(\alpha_{5}-\alpha_{2})\sin^{2}\psi_{0})v_{z,\,x,\,x}+\\+(\alpha_{4}-(\alpha_{2}+\alpha_{5})\sin^{2}\psi_{0})v_{z,\,z,\,z}+2\alpha_{2}\sin\psi_{0}\theta_{1,\,t,\,x}+\\+(\alpha_{2}+\alpha_{3}+\alpha_{5}+\alpha_{6})\cos\psi_{0}S(t)\theta_{1,\,z}+(\alpha_{2}+\alpha_{5})(\cos^{2}\psi_{0}-\sin^{2}\psi_{0})S(t)\psi_{1,\,x}=0,$$

$$\gamma_{1}\theta_{1,\,t}+(\alpha_{3}v_{x,\,z}+\alpha_{2}v_{z,\,x})\sin\psi_{0}+\alpha_{3}(\cos\psi_{0}(S(t)+v_{y,\,z})-\\-S(t)\sin\psi_{0}\psi_{1})=(K_{1}-K_{2})(\cos\psi_{0}\psi_{1,\,x,\,x}+\theta_{1,\,z,\,z})+\\+K_{2}(\theta_{1,\,x,\,x}+\theta_{1,\,z,\,z})+(K_{3}-K_{2})\sin^{2}\psi_{0}\theta_{1,\,x,\,x},\\\gamma_{1}\psi_{1,\,t}+(\alpha_{3}\cos^{2}\psi_{0}-\alpha_{2}\sin^{2}\psi_{0})v_{y,\,x}+(\alpha_{2}+\alpha_{3})\sin\psi_{0}\cos\psi_{0}v_{x,\,x}-\\-\alpha_{2}\sin\psi_{0}S(t)\theta_{1}=(K_{1}-K_{2})\cos\psi_{0}(\cos\psi_{0}\psi_{1,\,x,\,x}+\theta_{1,\,z,\,x})+\\+K_{2}(\psi_{1,\,x,\,x}+\psi_{1,\,z,\,z})+(K_{3}-K_{2})\sin^{2}\psi_{0}\psi_{1,\,x,\,x},\\+H_{2}(\psi_{1,\,x,\,x}+\psi_{1,\,z,\,z})+(K_{3}-K_{2})\sin^{2}\psi_{0}\psi_{1,\,x,\,x}+\theta_{1,\,z,\,x})+\\+K_{2}(\psi_{1,\,x,\,x}+\psi_{1,\,z,\,z})+(K_{3}-K_{2})\sin^{2}\psi_{0}\psi_{1,\,x,\,x}+\theta_{1,\,z,\,x})+\\+K_{2}(\psi_{1,\,x,\,x}+\psi_{1,\,z,\,z})+(K_{3}-K_{2})\sin^{2}\psi_{0}\psi_{1,\,x,\,x},$$

При выводе системы уравнений (1) предполагалось: постоянство всел величин вдоль направления потока (ось (ОҮ); гармонический характер зависимости возникающих отклонений по осям 0X и 0Z: θ_1 ψ_1 , v_x , v_y , $v_z \sim \exp\left[i\left(k_xx+k_zz\right)\right]$; жесткое сцепление на границе слоя, т. е. $k_z=\pi/d$; нескимаемость НЖК div v=0; пренебрегали влиянием инерционных членов вида $\rho dv/dt$ и $\rho_1 d^2 \mathbf{n}/dt^2$. Последние два допущения верны, так как в нашем случае рассматриваются достаточно низкие частоты осцилляций ($\omega=-10^{-2}\div10^3~c^{-1}$). Здесь α_1,\ldots,α_6 — вязкости Лесли, $\gamma_1=\alpha_2-\alpha_3,\ K_1,\ K_2,\ K_3$ — модули упругости Франка.

Далее надо выразить v_x , v_y , v_z из первых трех уравнений через θ_1 и ψ_1 и подставить соответствующие выражения в два последних уравнения. Полный вид этой системы двух уравнений не приводится из-за громоздкости. Ниже приведена система в которой оставлены только наиболее существенные слагаемые:

$$a_{1}\theta_{1, t} + b_{1}\theta_{1} + c_{1}S(t)\psi_{1} = -\alpha_{3}\cos\psi_{0} \cdot S(t),$$

$$a_{2}\psi_{1, t} + b_{2}\psi_{1} + c_{2}S(t)\theta_{1} = 0,$$
(2)

тде

$$a_{1} \approx a_{2} \approx \gamma_{1} - \frac{2\alpha_{2}^{2}k_{x}^{2}\sin^{2}\psi_{0}}{(k_{x}^{2} + k_{z}^{2})(\alpha_{4} + (\alpha_{5} - \alpha_{2})\sin^{2}\psi_{0})},$$

$$b_{1} \approx K_{1}k_{z}^{2} + (K_{2}\cos^{2}\psi_{0} + K_{3}\sin^{2}\psi_{0})k_{x}^{2},$$

$$b_{2} \approx K_{2}k_{z}^{2} + (K_{1}\cos^{2}\psi_{0} + K_{3}\sin^{2}\psi_{0})k_{x}^{2},$$

$$c_{1} \approx -\alpha_{3}\sin\psi_{0} - \alpha_{2}\sin\psi_{0}\frac{(\alpha_{2} + \alpha_{5})(\cos^{2}\psi_{0} - \sin^{2}\psi_{0})}{(\alpha_{4} + (\alpha_{5} - \alpha_{2})\sin^{2}\psi_{0})(k_{x}^{2} + k_{z}^{2})},$$

$$c_2 = -\alpha_2 \sin \psi_0 \left(1 + \frac{(\alpha_2 - \alpha_5) k_x^2 \sin^2 \psi_0}{(\alpha_4 + (\alpha_5 - \alpha_2) \sin^2 \psi_0) (k_x^2 + k_z^2)} \right).$$

Система (2) описывает все характерные особенности ориентационной неустойчивости НЖК аналогичных МББА, т. е. таких, у которых коэф-

фициенты вязкости Лесли а, а, а, а малы в сравнении с а, а.

Исследуем систему (2) на предмет существования периодических незатухающих решений $\theta_1(t)$ и $\psi_1(t)$. Задаем воздействие $S(t) = S_0 \sin \omega t$ и используем метод разложения $\theta_1(t)$ и $\psi_1(t)$ в ряд Фурье [2-5, 7, 11]. Ограничивая рассмотрение учетом нудевых и первых гармоник, получаем систему шести уравнений и далее, приравнивая ее детерминант к нулю, получаем следующее условие существования незатухающих решений:

$$S_0^2(k_x^2) = \frac{2b_1^2b_2^2 + a_1a_2\omega^2\left[b_1^2 + b_2^2 \pm (b_1^2 - b_2^2)\right]}{c_1c_2b_1b_2}.$$
 (3)

Минимум зависимости $S_0(k_x)$, если он существует, определяет пороговые значения градиента скорости $S_{0 \text{ пор}}$ и волнового вектора $k_{x \text{ опт}}$, соответствующих возникающей неустойчивости.

При получении выражения (3) учитывали только нулевую и первую гармоники. Нетрудно показать, что отбрасывание более высоких гармоник

корректно, если

$$(S_0/\omega)^2 \ll ((\alpha_3/\alpha_2)^2 + (\alpha_2/\alpha_3)^2)/\sin^2\psi_0.$$
 (4)

Кроме того, система (2) имеет ненулевую правую часть и, значит, при воздействии, меньшем порогового, есть ненулевые отклонения директора. Из требования малости допороговых отклонений θ₁ и ψ₁ получаем еще одно условие корректности проводимого рассмотрения:

$$(S_0/\omega)^2 \ll ((\alpha_3/\alpha_2)^2 + (\alpha_2/\alpha_3)^2)/\cos^2\psi_0.$$
 (5)

Заметим, что в случае неустойчивости Гийона — Пьеранского при воздействиях, меньших порогового, исходная структура остается невозмущенной,

так как нет моментов, стремящихся повернуть молекулы.

Требования (4)-(5) накладывают ограничения на область углов ψ_0 и частот ω , где верно проведенное рассмотрение. В частности, именно из-за условия (5) вне рассмотрения остаются узкие области углов ψ_0 вблизи 0 и π , определяемые неравенством $|\psi_0|$, $|\psi_0-\pi|<|\alpha_3/\alpha_2|^{V_2}$. Оба эти требования накладывают ограничение снизу на частоту осцилляции ω , а именно $\omega^2 > K^2 |\alpha_3 \alpha_2|/(d^4 \sin^2 \psi_0)$.

Прежде чем приступить к анализу выражения (3), опишем явления, происходящие в слое НЖК по мере увеличения амплитуды градиента

скорости S, при условии, что частота $\omega \gg \tau^{-1} \sim K/d^2$.

Пока S_0 мало ($S_0 < S_{0 \text{ пор}}$), имеют место увеличивающиеся с ростом S_0 отклонения директора:

$$\theta_1(t, x, y, z) \simeq -\frac{\alpha_3}{\gamma^1} \frac{S_0}{\omega} \cos \omega t \cos k_z z \cos \psi_0,$$

$$\alpha_3 \alpha_2 S_0^2 \cos \omega t \cos k_z z \cos \psi_0,$$

$$\sin 2\psi_0$$

$$\psi_1(t, x, y, z) \simeq \frac{\alpha_3 \alpha_2}{\gamma_1^2} \frac{S_0^2}{\omega^2} \cos 2\omega t \cos k_z z \frac{\sin 2\psi_0}{8}$$
.

Далее, когда S_0 достигнет значения $S_{0 \text{ пор}}$, начинает развиваться роллнеустойчивость, при которой возникает следующая картина отклонений: $\theta_1(t,x,y,z) \simeq \theta_1(t,S_0) \cos k_{x \text{ опт}} x \cos k_z z$, $\psi_1(t,x,y,z) \simeq \psi_1(t,S_0) \cos k_{x \text{ опт}} x \cos k_z z$, $\psi_1(t,x,y,z) \simeq \psi_1(t,S_0) \cos k_{x \text{ опт}} x \cos k_z z$, где $\theta_1(t,S_0)$ и $\psi_1(t,S_0)$ — некие периодические функции времени с отличными от нуля средними по времени значениями $\langle \theta_1(t) \rangle \neq 0$ и $\langle \psi_1(t) \rangle \neq 0$. Они возрастают по мере увеличения величины $(S_0 - S_{0 \text{ пор}})/S_{0 \text{ пор}}$ (для выяснения характера этого роста необходимо исследовать нелинеаризованную систему уравнений, аналогичную (2)).

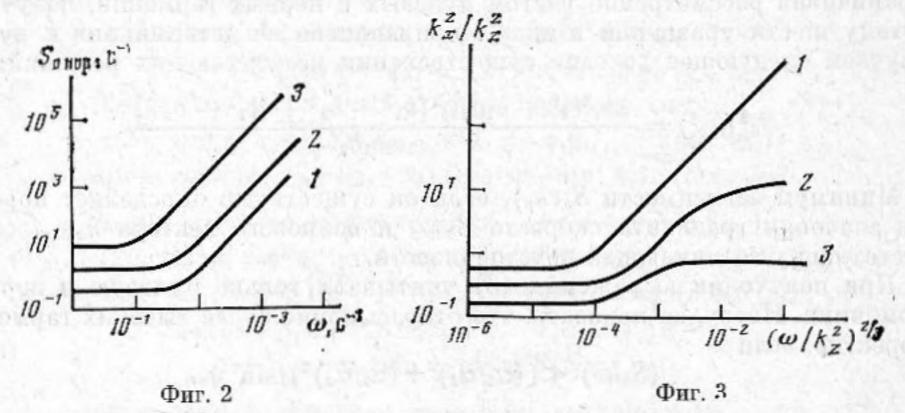
С дальнейшим увеличением S_0 косинусоидальный характер зависимости θ_1 и ψ_1 от z и x нарушается, отклонения директора достигают своих предельных значений $\theta_1 \simeq (\alpha_3/\alpha_2)^{\frac{1}{2}}$, $\psi_1 \simeq \psi_0$. При еще больших воздействиях S_0

происходит турбулизация потока и полное разупорядочение структуры

[12-13].

Проведем конкретные оценки $S_{0 \text{ пор}}$ и $k_{\text{х опт}}$ для жидкого кристалла со следующими вязкоупругими параметрами (МББА): α_1 =0,01 кг/м·с, α_2 ==-0,08, α_3 =-0,001, α_4 =0,08, α_5 =0,05, α_6 =-0,03 кг/м·с; K_1 =5·10⁻¹² H; K_2 =3·10⁻¹²; K_3 =8·10⁻¹² H; толщины слоев d=(10⁻³÷10⁻²) м; диапазон частот ω =(10⁻²÷10³) с⁻¹.

Общая формула для $S_{0 \text{ пор}}$ и $k_{x \text{ онт}}$, получающаяся из исследования на минимум зависимости $S_0(k_x)$ (3), громоздка и малонаглядна. Поэтому



Фиг. 2. Зависимость $S_{0 \text{ пор}}$ от частоты ω при $k_z=10^5$ м⁻¹, для различных значений ψ_0 : $I-\psi_0=\pi/2;\ 2-\psi_0=^3/_8\pi,\ 3-\psi_0=0.15$

Фиг. 3. Зависимость $k_{z\,\text{опт}}$ от частоты ω для значений ψ_0 : $1-\psi_0=\pi/2$, $2-\psi_0=^3/_8\pi$, $3-\psi_0=0.15$

удобнее изобразить соответствующие зависимости графически. В силу симметрии задачи достаточно рассмотреть область углов ψ₀[0; π/2], так как ситуации с углами ψ₀, π-ψ₀, π+ψ₀ и 2π-ψ₀ эквивалентны.

Графики зависимости $S_{0 \text{ пор}}$ и $k_{\text{х опт}}$ от ω и d изображены на фиг. 2 и 3. Нормирование на k_z^2 позволяет сопоставить данные, относящиеся к раз-

личным толщинам слоя.

Обратим внимание на тот факт, что асимптотическое поведение $k_{x \text{ опт}}$ при $\omega \to \infty$ носит различный характер в зависимости от величины угла ψ_0 . Когда $\sin^2 \psi_0 < \sin^2 \psi_0$ κ_p , $k_{x \text{ опт}}$ стремится к некоторому конечному пределу $k_{x \text{ пр}}$, а при $\sin^2 \psi_0 > \sin^2 \psi_0$ κ_p , $k_{x \text{ опт}}$ неограниченно возрастает с ростом ω .

Условия на $\psi_{0 \text{ кр}}$ легко получить из выражения (3). Для этого надо при исследовании функции $S_0(k_x)$ на экстремум ($\partial S_0/\partial k_x=0$) устремить ω к бесконечности и посмотреть, как будет при этом себя вести $k_{x \text{ опт}}$. Получаем следующую оценку для $\psi_{0 \text{ кр}}$:

$$ctg^2 \psi_{0 \text{ kp}} \simeq 1 + 2\alpha_3/(\alpha_2 + \alpha_5).$$
 (6)

Соответственно если $\alpha_3 > -(\alpha_2 + \alpha_5)/2$, то область, где наблюдается неогра-

ниченный рост $k_{x \text{ онт}}$, отсутствует. Для МББА $\psi_{0 \text{ кр}} \simeq \pi/4$.

Такое различие в поведении $k_{x \text{ онт}}$ с ростом частоты связано с тем, что вклад в развитие неустойчивости от слагаемых, связанных с взаимодействием через поле скоростей $\psi_1 \rightarrow v_z \rightarrow \theta_1$, меняет свой знак вблизи значения $\psi_0 = \pi/4$. Это последнее слагаемое $0.5(\alpha_2 + \alpha_5)(\cos^2\psi_0 - \sin^2\psi_0)S(t)\psi_{1,x}$ в третьем уравнении и третье слагаемое $\alpha_2v_{z,x}\sin\psi_0$ в четвертом уравнении системы (1). И если при $\psi > \psi_0$ кр развитие неустойчивости с малым периодом (большим k_x) более выгодно, то при $\psi_0 < \psi_0$ кр увеличение k_x приводит к увеличению демифирующего воздействия потока.

В настоящее время нет экспериментальных данных о пороговых характеристиках описанной выше неустойчивости при произвольном зна-

чении угла фо.

Следует отметить, что качественная картина неустойчивости планарно ориентированного образца НЖК в Пуазейлевом течении, по данным работ [7-8], должна соответствовать случаю чисто сдвигового течения. В этой

связи представляет интерес полученная в работе [14] экспериментальная зависимость $k_{x \text{ опт}}(\psi_0)$, для случая радиально расходящегося осциллирующего Пуазейлева течения. Эта зависимость согласуется с нашими теоретическими расчетами. В частности, в опытах наблюдали резкое падение $k_{x \text{ опт}}(\psi_0)$ вблизи $\psi_0 = \psi_0 \,_{\text{кр}}$. Факт увеличения $S_0 \,_{\text{пор}}$ по мере приближения $\psi_0 \,_{\text{кр}}$ к нулю также подтверждается экспериментально.

Из рассмотренной модели следует, что действие осциллирующего сдвигового течения приводит к возникновению ориентационной неустойчивости в планарном образце НЖК при произвольном угле между скоростью течения и исходной ориентацией молекул. Причем неустойчивость имеет место не только при α₃<0, но и сохраняется в достаточно широкой области зна-

чений α_3 , в том числе и при $\alpha_3 > 0$.

Установлен факт существования некоторого угла $\psi_{0 \text{ кр}}$, разделяющего области, где характер зависимости $k_{x \text{ опт}}(\omega)$ существенно различается. Для всех указанных характеристик неустойчивости ($S_{0 \text{ пор}}$, $k_{x \text{ опт}}$ и $\psi_{0 \text{ кр}}$) получены аналитические выражения, через вязкоупругие параметры НЖК, толщину слоя и частоту осцилляций.

Полученные результаты позволяют оценить параметры акустически управляемых фазовых решеток, инициируемых ориентационной неустойчивостью НЖК, и предельную величину внешнего акустического воздействия, ограничивающего интервал линейного отклика акустооптических устройств.

Автор выражает благодарность С. А. Пикину за постановку задачи и

ее обсуждение.

ЛИТЕРАТУРА

1. Де Жан II. Физика жидких кристаллов. M.: Мир, 1977, с. 120.

2. Пикин С. А. Структурные превращения в жидких кристаллах. М.: Наука, 1981. 3. Pieranski P., Guyon E. Instability of certain shear flows in nematic liquids.— Phys. Rev. A, 1974, v. 9, p. 404—417.

4. Dubois - Violette E. et coll. Theory and experiments of plane shear flow instabili-

ties in nematics.— J. de Mecanique, 1977, v. 16, № 5, p. 733-767.

Manneville P. Theoretical analysis of Poiseulle flow instabilities in nematics.—
 J. de Physique, 1979, v. 40, № 7, p. 713—725.

 Clark M. G., Leslie F. M. A study of flow alignment instability during rectilinear

oscillatory shear of nematics.— Mol. Cryst. and Liq. Cryst., 1981, v. 70, p. 195-222.

7. Guyon E., Pieranski P. Poiseille flow instabilities in nematics.— J. de Physique, Coll. C1, 1975, v. 36, sup. № 3, p. C1-203-208.

Coll. C1, 1975, v. 36, sup. № 3, p. C1-203-208.

8. Janossy J., Pieranski P., Guyon E. Poiselle flow in nematics experimental study of

the instabilities.— J. de Physique, 1976, v. 37, № 10, p. 1105-1113.

 Pieranski P., Guyon E. Effects of elliptically polarized shear flows in nematics.— Phys. Rev. Letters, 1977, v. 39, № 2, p. 1280-1282.
 Dreyfus J.-M., Guyon E. Confective instabilities in nematics caused by an elliptical

shear. – J. de Physique, 1981, v. 42, № 7, p. 915—928.

- 11. Чигринов В. Г., Пикин С. А. Электрогидродинамический эффект в жидких кристаллах в переменном электрическом поле.— Кристаллография, 1978, т. 23, вып. 2, с. 333—345.
- Manneville P. Non-linearities and fluctuations at the threshold of a hydrodynamic instability in nematics. — J. de Physique, 1978, v. 39, № 9, p. 911—925.

13. Manneville P. The transition to turbulence in nematic liquid crystals. - Mol. Cryt.

and Liq. Cryst., 1981, v. 70, p. 223-250.

14. Аникеев Д. И. Исследование неустойчивости Гийона — Пьеранского при произвольном угле между директором и сдвигом.— Тез. докл. V конф. соц. стран по жидким кристаллам. Одесса: Наука, 1983, т. 1, часть II, с. 46.

Акустический институт им. Н. Н. Андреева Академии наук СССР

Поступила в редакцию 10.V.1984