Том XXXIII 1987 Вып. 1

УДК 534:551.463.228

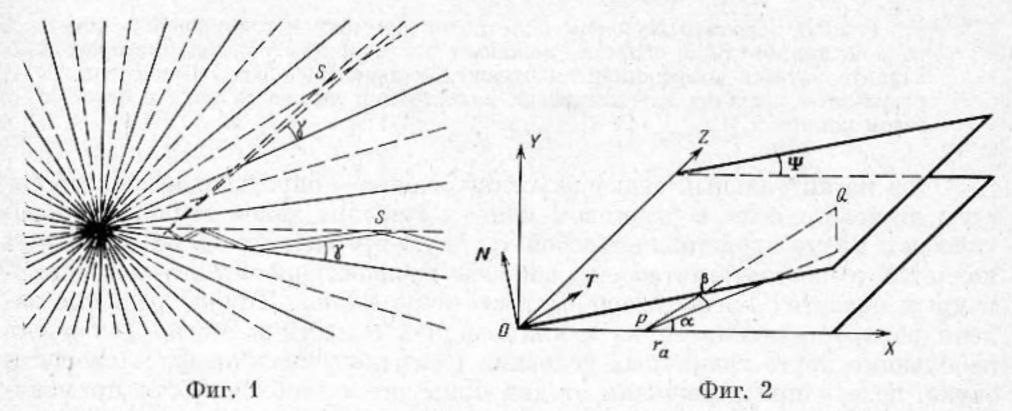
ШУМОВОЕ ПОЛЕ, СОЗДАВАЕМОЕ ПОВЕРХНОСТНЫМИ ИСТОЧНИКАМИ В БЕРЕГОВОМ КЛИНЕ

Комиссарова Н. Н.

Решена задача о шумовом поле поверхностных источников в однородной клиновидной области, лежащей на полупространстве, которое характеризуется коэффициентом отражения звуковой волны. Приведены результаты расчетов характеристик анизотропии шумового поля в береговом клине.

Одна из актуальных задач акустики океана — определение характеристик шумового поля в береговом клине. Решение такой задачи в теоретическом плане представляет собой трудную проблему и одной из причин является то обстоятельство, что вопросы распространения звука в клиновидных областях не исследованы достаточно полно. Точное решение задачи распространения звука в клиновидной области известно для очень небольшого круга граничных условий. Попытки учесть профиль скорости звука, потери при отражении от дна приводят к необходимости применения приближенного подхода к решению - к использованию геометрооптического приближения, метода приближенного разделения переменных, метода поперечных сечений, метода параболического уравнения, каждый из которых имеет свои недостатки и ограничения. В связи с этим расчет характеристик шумовых полей в клиновидных областях проводился в ряде работ [1-4] только для клина с абсолютно отражающими гранями. В данной работе в качестве модели береговой зоны рассматривается однородная клиновидная область, граничащая снизу с полупространством, которое характеризуется зависящим от угла скольжения звуковой волны коэффициентом отражения. При решении используется геометрооптический подход.

Пусть (r, z, φ) — цилиндрическая система координат, причем ось z совпадает с ребром клина. Поверхность $\varphi=0$ — абсолютно мягкая, нижняя грань клина $\varphi=\Phi$ (наклонное дно) представляет собой границу между двумя средами — между жидкой средой, заполняющей клиновидную область $(0 < \varphi < \Phi)$, с параметрами φ (плотность) и $c(1-i\delta)$ (скорость звука) и полупространством, которое характеризуется коэффициентом отражения $V(\gamma)$, где γ — угол скольжения падающей звуковой волны относительно границы (в частном случае, это может быть жидкое полупространство с плотностью φ_1 и скоростью звука $c_1(1-i\delta_1)$; параметры δ и δ_1 — отношения мнимых частей скорости звука к действительным — описывают поглощение в воде и в грунте соответственно).


На поверхности $\phi=0$, $|z|<\infty$ равномерно распределены некоррелированные источники шума, диаграмма направленности которых (по энергии) описывается функцией

$$G^{2}(\gamma_{0}) = \sin^{2m} \gamma_{0}, \tag{1}$$

где γ_0 — угол скольжения луча у поверхности, показатель степени m может принимать значения 1, 2 и т. д. [5].

Будем определять характеристику анизотропии поверхностного шума в произвольной точке P клиновидной области, т. е. интенсивность шума, приходящего с заданного направления в единичный телесный угол в точку $P(r_a, 0, \varphi_a)$. Выпустим из точки наблюдения P лучевую трубку с малым телесным углом $\Delta\Omega$ в каком-либо фиксированном направлении, как это делается при решении аналогичной задачи для волновода с плосконараллельными границами [5]. Многократно отражаясь от дна и поверхно-

сти, трубка вырезает на поверхности площадки ΔS_j , шумовое излучение с которых и попадает в телесный угол $\Delta\Omega$. Суммируя интенсивности шумовых полей источников, принадлежащих площадкам ΔS_j , с учетом их направленности и потерь при отражении от дна, получим полную интенсивность шума, приходящего с данного направления. Задача сводится, таким образом, к определению параметров лучей, испытывающих многократные отражения от наклонного дна и поверхности. Оказывается, что параметры лучей в однородной клиновидной области проще всего определять с помощью картины мнимых источников. Известно [6], что поле точечного гармонического источника с координатами (r_s, φ_s, z_s) в клиновидной области с абсолютно отражающими гранями в геометрическом приближении

Фиг. 1. Расположение поверхности Π_0 , дна D_0 , реальной лучевой трубки и их отображений в пространстве. Здесь γ — угол γ_{Dj} скольжения лучевой трубки у дна при j-том отражении, S — площадка ΔS_j , которую после отражения от дна вырезает лучевая трубка на поверхности

Фиг. 2. К вычислению интенсивности шумового поля. Q — точка пересечения луча с плоскостью Π_j , $\psi = \psi_{\Pi_j}$

можно представить как сумму полей действительного и мнимых источников в однородном пространстве, причем эти источники расположены в перпендикулярной ребру клина плоскости $z=z_s$ на окружности $r=r_s$, а их угловые координаты при этом равны $\phi=\phi_j=2j\Phi\pm\phi_s$, $j=0,\pm1,\ldots$ Число мнимых источников конечно и определяется из условия $|\phi_j|<\pi$. Соединив точку наблюдения с мнимыми и действительными источниками, получим весь набор лучей, пришедших в точку наблюдения от источника, расположенного в клиновидной области. Эта же лучевая структура имеет место в клиновидной области, если нижняя грань клина не абсолютно отражающая. В этом можно также убедиться, если последовательно проводить зеркальные отображения источника относительно границ области, как это делается при построении лучевой картины для волновода с плоскопараллельными границами. При этом реальный луч отобразится в прямую линию, соединяющую приемник с одним из мнимых источников.

Если источники заполняют всю грань φ=0, то соответствующие им мнимые источники располагаются на полуплоскостях $\phi = \phi_{\Pi i} = -2i\Phi$, ($i = -2i\Phi$) $=\pm 1, \pm 2, \ldots$), проходящих через ребро клина. Полуплоскость $\phi = \Phi$ (дно) в процессе отображения перейдет в полуплоскость $\phi = \phi_{Di} = -2i\Phi + \Phi$, i ==±1, ±2,... На фиг. 1 изображен разрез клиновидной области плоскостью, перпендикулярной ребру клина. Пунктиром обозначено положение полуплоскостей П_j, являющихся отображением поверхности П_o и содержащих мнимые источники шума; сплошными линиями - положение полуплоскостей D_i , являющихся отображениями полуплоскости D_0 (дна). На фиг. 1 изображена также реальная лучевая трубка в клине и ее отображение (пунктиром), которое пересекает отображения дна (D_i) и поверхности (Π_i) под углами скольжения соответственно γ_{Di} и $\gamma_{\Pi i}$, причем углы үрі и үпі равны углам скольжения реальной лучевой трубки при отражениях от дна и поверхности. Эта отображенная лучевая трубка вырезает на полуплоскостях П, содержащих мнимые источники, площадки ΔS_i , излучение которых можно сложить и получить интенсивность шумового поля, приходящего в телесный угол ΔΩ с заданного направления

в точку P.

Параметры отображенного луча (а следовательно, и реального луча) определяются следующим образом. Введем декартову систему координат (X, Y, Z), в которой ось Z совпадает с ребром клина, а ось X проходит через точку наблюдения P, так что в этой системе точка P определяется радиус-вектором $\mathbf{R}_a(r_a, 0, 0)$. Зададим направление выпускаемого из точки P луча углами α , β (см. фиг. 2), причем α — угол между осью OX и проекцией луча на плоскость XY, β — угол наклона луча к плоскости XZ; $0 \le \alpha \le \pi$, $|\beta| < \pi/2$. В этой системе координат направление луча в пространстве задается единичным вектором $\mathbf{T}(l_x, l_y, l_z)$ с направляющими косинусами l_x =соѕ β соѕ α , l_y =sin β , l_z =соѕ β sin α , а уравнение луча имеет вид

$$(\mathbf{R} - \mathbf{R}_a) \times \mathbf{T} = 0. \tag{2}$$

Полуплоскость Π_j , содержащая мнимые источники, характеризуется перпендикулярным к ней единичным вектором $N(L_x, L_y, L_z)$ с направляющими косинусами L_x =sin ψ_{Π_j} , L_y =cos ψ_{Π_j} , L_z =0, причем ψ_{Π_j} =2 $j\Phi$ + ϕ_a — угол между плоскостью XZ и полуплоскостью Π_j . Уравнение этой полуплоскости определяется соотношением \mathbf{RN} =0 или

$$Y\cos\psi_{\Pi j}-X\sin\psi_{\Pi j}=0. \tag{3}$$

Луч пересекает полуплоскость Π_j в точке Q_j под углом $\gamma_{\Pi j}$, причем $\sin \gamma_{\Pi j} = -TN/TN = \cos \psi_{\Pi j} \sin \beta - \sin \psi_{\Pi j} \cos \beta \cos \alpha$. Расстояние R_{aj} между точками P и Q_j равно $R_{aj} = r_a |\sin \psi_{\Pi j}/\sin \gamma_{\Pi j}|$. Лучевая трубка с телесным углом $\Delta\Omega$ при пересечении с плоскостью Π_j имеет сечение $\Delta S_j = \Delta\Omega R_{aj}^2/|\sin \gamma_{\Pi j}|$.

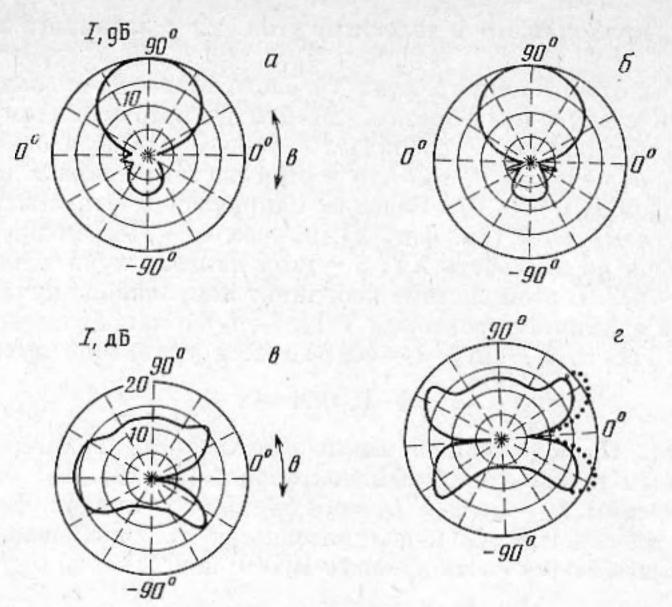
Интенсивность шумового поля, приходящего в телесный угол ΔΩ с направления, задаваемого углами α, β, от мнимых источников, располо-

женных на площадке ΔS_{j} плоскости Π_{j} , равна

$$\Delta J_j = V_j^2 G^2(\gamma_{\Pi j}) |\exp(ikR_{aj})/R_{aj}|^2 \Delta S_j, \tag{4}$$

где $k=2\pi f/[c(1-i\delta)]$ — комплексное волновое число, f — средняя частота фильтра, в полосе которого ведется прием шума. Здесь учтена диаграмма направленности источников шума $G^2(\gamma_{\Pi j})$ и введен коэффициент V_j , описывающий ослабление поля при многократных отражениях от дна; он равен произведению коэффициентов отражения от дна

$$V_{j} = \prod_{i=i_{1}}^{i_{2}(j)} V(\gamma_{Di}), \qquad (5)$$


причем угол скольжения γ_{Di} реального луча, идущего от площадки ΔS_i , при i-том отражении от дна (γ_{Di} — угол скольжения отображенного луча относительно отображений дна — полуплоскостей D_i) определяется из соотношения

$$\sin \gamma_{Di} = \cos \psi_{Di} \sin \beta - \sin \psi_{Di} \cos \beta \cos \alpha, \tag{6}$$

где $\psi_{Di}=2\Phi i-\phi+\phi_a-$ угол между плоскостью XZ и полуплоскостью D_i . Значения i в формуле (5) меняются при $\beta>0$ от $i_1=1$ до $i_2=j$ (j>0), а при $\beta<0$ — от $i_1=0$ до $i_2=j+1$ (j<0). Остается сложить интенсивности шумовых полей, приходящих от всех площадок ΔS_i , вырезаемых лучевой трубкой с телесным углом $\Delta\Omega$. С учетом выражения (1) имеем

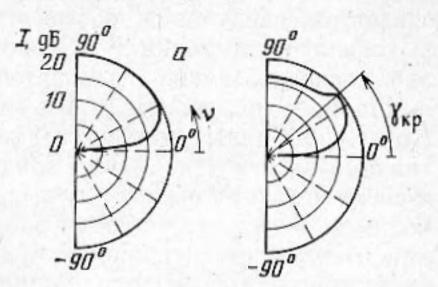
$$\Delta J = I(\alpha, \beta) \Delta \Omega = \sum_{j=j_1}^{j_2} V_j^2 |\sin \gamma_{\Pi j}|^{2m-1} \exp \left[-2 \operatorname{Im} k r_0 \frac{|\sin \psi_{\Pi j}|}{|\sin \gamma_{\Pi j}|} \right] \Delta \Omega, \quad (7)$$

где j_1 =0 при β >0 и j_1 =-1 при β <0, а $|j_2|$ = $E[|\psi_k-\varphi_a|/(2\Phi)]$. Здесь введена функция E[x] — наибольшее целое число, которое меньше x, ψ_k — угол между плоскостью XZ и полуплоскостью, проходящей через ось Z параллельно лучу: ψ_k =arctg(tg β /cos α) + Δ , где Δ =0 при π /2> α >0, Δ == π sign β при π > α > π /2.

Фиг. 3. Характеристики анизотропии шумового поля в вертикальных плоскостях, ориентированных перпендикулярно (a, s) и параллельно (b, s) ребру клина при m=2, $c_1=1600$ (1-0.01i) м/с, $\rho_1=1.6$ г/см³ (a, b) и m=1, $c_1=2000$ (1-0.01i) м/с, $\rho_1=2$ г/см³ (b, s), i- мнимая единица

Координаты точек пересечения Q_j отображенного луча с плоскостью Π_j определяются из решения системы уравнений (2), (3). В то же время точки Q_j соответствуют точкам выхода реального многократного отраженного луча на поверхность. Нетрудно показать, что они принадлежат гиперболе

$$(r_a + r \operatorname{ctg} \alpha)^2 + (z \operatorname{tg} \beta / \sin \alpha)^2 - r^2 = 0, \tag{8}$$


проходящей через точку $r=r_a$, z=0 и имеющей асимптоты $r=\pm A(\alpha, \beta)z$, где $A(\alpha, \beta)=\sqrt{\cos^2\alpha+tg^2\beta/\sin\alpha}$. То обстоятельство, что траектории лучей в горизонтальной плоскости описываются гиперболами, было отмечено в работе [7]. Таким образом, в лучевую трубку, ориентированную под углами α , β , приходит шум с участков поверхности, принадлежащих гиперболе (8). Например, для лучевой трубки, ориентированной параллельно ребру ($\alpha=\pi/2$), выражение (8) переходит в $(r/r_a)^2+(z tg \beta/r_a)^2=1$. Эта гипербола имеет асимптоты $r=\pm z tg \beta$, при этом чем больше β (т. е. чем круче выходит луч), тем больше он отклоняется в горизонтальной плоскости и тем с более удаленных от ребра клина участков поверхности собирается шум.

Расчеты, проведенные по формуле (7), показали, что шумовое полеповерхностных источников в клиновидной области обладает ярко выраженной анизотропией в горизонтальной и вертикальной плоскостях, которая может существенно отличаться от соответствующих характеристик для волновода с плоскопараллельными границами. Особенности анизотропии шумового поля в клине определяются вкладом компоненты этогополя, связанной с многократными отражениями от дна. На фиг. 3 изображены результаты расчета характеристик анизотропии (нормированной на максимум функции I в дБ) в вертикальных плоскостях, различным образом ориентированных по отношению к ребру клина. Угол в отсчитывается от направления приема до горизонтальной плоскости. Правая часть графиков соответствует приему со стороны глубоководной части клина, левая — со стороны ребра. Фигура 3, а, б относится к случаю, когда вклад многократных отражений мал (за счет малой ширины диаграммы направленности источников шума при m=2). Характеристики анизотрошии в вертикальных плоскостях имеют максимумы для направлений приема.

близких к вертикальному, уровень шума мало отличается от уровня шума поверхностных источников в безграничном океане.

Если вклад многократных отражений велик, характеристики анизотропии в вертикальных плоскостях имеют максимумы при углах наблюде-

ния b, близких к значению критического угла скольжения үкр. Результаты расчета для такого случая изображены на фиг. 3, в, г (критический угол в этом случае составляет 40°). Это характерно и для волновода с плоскопараллельными границами. На фиг. 3, г для сравнения точками изображена характеристика анизотропии шумового поля для плоского волновода, параметры которого совпадают с параметрами сечения области вертикальной клиновидной плоскостью, проходящей через точку Pпараллельно ребру клина. Различие в уровнях принимаемого шума в вертикальной плоскости, параллельной ребру клина, и в соответствующем волноводе

Фиг. 4. Характеристики анизотропии шумового поля в горизонтальной плоскости при $c_1 = 1600$ (I - 0.01i) м/с, $\rho_1 = 1.6$ г/см³, m = 2 (a) и $c_1 = 2000$ (I - 0.01i) м/с, $\rho_1 = 2$ г/см³, m = 1 (δ), i -мнимая единица

обусловлено рефракцией лучей в горизонтальной плоскости, связанной с

отражениями от наклонного дна.

Другой отличительной особенностью шумового поля в клиновидной области является наличие максимума интенсивности шума при приеме со стороны ребра клина (см. фиг. 3, в). Этот максимум тем больше, чем больше уровень компоненты поля, связанной с многократными отражениями. Независимо от коэффициента отражения $V(\gamma)$ и ширины диаграммы направленности источников шума существует область направлений со стороны глубоководной части клина, в которых шум не приходит вообще. Это обстоятельство, однако, выполняется только в рамках принятой здесь модели среды; при учете рассеяния и профиля скорости звука положение может измениться. Все эти особенности шумового поля в клине можно объяснить, если обратиться к картине мнимых источников. Например, если проанализировать структуру шумового поля в плоскости, перпендикулярной ребру клина, то можно заметить следующее (см. фиг. 1): если луч выходит в сторону глубоководной части клина под углом b к горизонтали, причем −2Ф ≤ b ≤0, то он не пересекает ни одной плоскости, содержащей мнимые или действительные источники шума, так что интенсивность шума в этом диапазоне углов b равна нулю. При $0 < b < 2\Phi$ луч пересекает только поверхность По, содержащую только действительные источники; в этом диапазоне углов шум приходит непосредственно от поверхности без отражений. При $2\Phi < b < 4\Phi$ луч пересекает плоскости Π_0 и П., т. е. добавляется шумовое поле, однократно отраженное от дна. При $4\Phi < b < 6\Phi$ добавляется двукратно отраженное от дна поле и т. д., при этом интенсивность шумового поля увеличивается. Так происходит до тех пор, пока величина угла b не превысит значение $\gamma_{\kappa p} + \Phi$, при этом отражения от дна начинают происходить под закритическими углами скольжения и вклад многократно отраженного поля уменьшается. Значению $b=\gamma_{\kappa p}+\Phi$ соответствует максимум характеристики анизотропии (см. фиг. 3, в). Аналогичным образом можно пояснить и наличие максимума анизотропии для направления на ребро клина.

Интересными свойствами обладают характеристики анизотропии в горизонтальной плоскости. В случае, когда уровень компоненты шумового поля, связанной с многократными отражениями, мал, максимум характеристики анизотропии соответствует направлению на ребро клина. Результаты расчета для такого случая показаны на фиг. 4, а, где представлена зависимость от азимутального угла в функции I, усредненной по углу наблюдения b в интервале —5÷5°. Азимутальный угол в отсчитывается от направления параллельного ребру клина. Верхняя часть графика соответствует приему со стороны ребра клина, нижняя — со стороны глубо-

ководной части. Иная картина наблюдается в случае, когда вклад многократных отражений существен. При этом максимум характеристики анизотропии, как это показано на фиг. 4, б приходится на значение азимутального угла θ, равное критическому углу скольжения үкр. Этот факт связан со следующим обстоятельством. Если фиксировать направление выхода луча из точки P и следить за углами γ_{Di} (6), под которыми этот луч последовательно отражается от дна, то оказывается, что для лучей, выходящих под малым углом скольжения к горизонтали в сторону ребра клина, при малых наклонах дна максимальное (по номеру отражения і) значение этого угла равно значению азимутального угла выхода луча θ и соответствует повороту луча в глубоководной части клина. Следовательно, если $\theta = \gamma_{\kappa p}$, то максимальное значение γ_{Dj} также равно $\gamma_{\kappa p}$, так что при θ>γ часть отражений будет происходить с закритическими углами скольжения, а шум, приходящий с этого направления, будет ослаблен из-за потерь при отражении от дна. Снижение уровня шума при азимутальных углах $\theta < \gamma_{\kappa p}$ связано с тем, что при уменьшении θ уменьшаются углы скольжения луча у поверхности и попадающее в лучевую трубку излучение ослаблено из-за направленности источников шума.

Уровень компоненты шумового поля, связанный с многократными отражениями, а следовательно, и вид характеристики анизотропии в клине зависит в основном от параметров дна. Чем больше значение критического угла скольжения укр, тем больше вклад многократных отражений, тем выше уровень шума, приходящего с направлений, определяемых значением укр, а также со стороны ребра клина. Такой же результат получается при уменьшении угла наклона дна или расширении диаграммы направ-

ленности источников шума.

Использованный здесь подход, основанный на определении траекторий лучей в клиновидной области с помощью картины мнимых источников, можно применять для решения широкого круга задач распространения звука в клиновидных областях.

ЛИТЕРАТУРА

1. Карновский А. М. Шумовое поле источников, сосредоточенных вблизи граничных поверхностей клина // Акуст. журн., 1982, Т. 28, № 6, С. 785—791.

Комиссарова Н. Н. Изменение спектра шума прибоя при распространении в береговом клине // Сб. Вопросы судостроения. Сер. Акустика, 1982, ВЫП. 15, С. 23-33.
Комиссарова Н. Н. Анизотропия поля шумов в береговом клине // Сб. Вопросы су-

достроения. Сер. Акустика, 1982, ВЫП. 15, С. 34-41.

Buckingham M. J. A theoretical model of surface-generated noise in a wedge-shaped ocean with pressure – release boundaries // J. Acoust. Soc. Amer., 1985, V. 78, № 1, P. 143-148.

5. Акустика океана/Под ред. Бреховских Л. М.- М.: Наука, 1974.

6. Сахарова М. П. Асимптотическое представление звукового поля точечного источника в клиновидной области // Акуст. журн., 1959, Т. 5, № 2, С. 215—220.

7. Кузнецов В. К. О новом методе решения задачи о звуковом поле в жидком клине // Акуст. журн., 1959, Т. 5, № 2, С. 170—175.

Акустический институт им. Н. Н. Андреева Академии наук СССР

Поступила в редакцию 7.IV.1986