Таблица 1

УДК 551.463.2

СТАТИСТИЧЕСКИЕ ХАРАКТЕРИСТИКИ НОРМАЛЬНЫХ ВОЛН ЗВУКОВОГО ПОЛЯ В СЛУЧАЙНО-НЕОДНОРОДНОМ ОКЕАНЕ

Голанд В. И.

На основе метода погружения [3] рассчитываются численным моделированием средние значения и дисперсии амплитуд и интенсивностей нормальных волн звукового поля точечного источника в случайно-неоднородном слоистом океане.

Поле излучения точечного монохроматического источника звука в модели слоистого океана с твердым дном и свободной поверхностью представляется в виде суммы нормальных волн [1]

$$p(\mathbf{r}, \mathbf{r}_0) = \pi i \sum_{n=0}^{\infty} \varphi_n(z_0) \varphi_n(z) H_0^{(1)} \left(\varkappa_n | \boldsymbol{\rho} - \boldsymbol{\rho}_0 | \right), \ \mathbf{r} = (\boldsymbol{\rho}, z), \tag{1}$$

а интенсивность звука

$$I(\mathbf{r}, \mathbf{r}_0) = |p(\mathbf{r}, r_0)|^2 / 2 =$$

$$= \frac{\pi^2}{2} \sum_{n,m} A_n(z_0, z) A_m(z_0, z) H_0^{(1)}(\varkappa_n |\rho - \rho_0|) H_0^{(2)}(\varkappa_m |\rho - \rho_0|), \qquad (2)$$

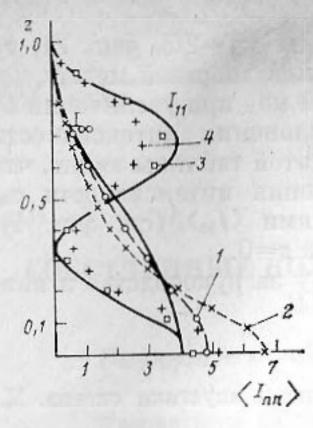
где \mathbf{r}_0 и \mathbf{r} — положения источника и приемника, $A_n(z_0,z) = \varphi_n(z_0)\varphi_n(z)$ — амплитуда n-й моды, а \varkappa_n и $\varphi_n(z)$ — собственные волновые числа и нормированные собственные функции краевой задачи

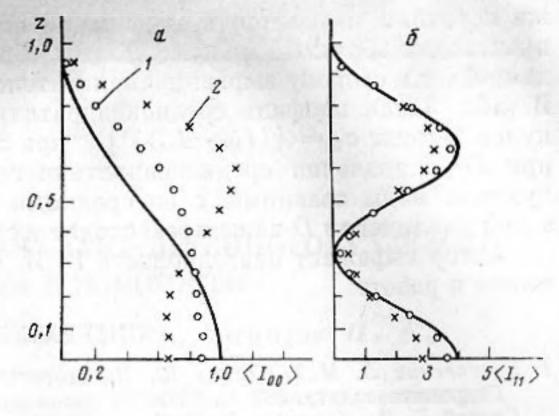
$$\varphi'' + \left[\frac{\omega^2}{c^2} (1 + \varepsilon(z)) - \varkappa^2\right] \varphi = 0, \quad \varphi'(0) = 0, \quad \varphi(H) = 0.$$
 (3)

Здесь ω — частота, a — скорость звука, H — глубина океана (ось z направлена вверх), а функция $\varepsilon(z)$ описывает неоднородности профиля скорости звука. Предположим, что $\varepsilon(z)$ — случайная функция — гауссовский дельта-коррелированный процесс с параметрами $\langle \varepsilon(z) \rangle = 0$ и $\langle \varepsilon(z) \varepsilon(z') \rangle = 2\sigma_e^2 l\delta(z-z')$. Тогда амплитуды нормальных волн $A_n(z_0,z)$ и их интенсивности $I_{nm}(z_0,z) = A_n(z_0,z) A_m(z_0,z)$ становятся случайными функциями z. В работе [2] рассматривалась статистическая задача (3) и на основе метода погружения [3] численным моделированием были рассчитаны одноточечные статистические характеристики собственных функций (средние значения, дисперсии, коэффициенты корреляции между различными модами), а также статистические характеристики собственных значений \varkappa_n . В настоящей работе на основе этого метода рассчитаны двухточечные характеристики собственных функций, характеризующие средние значения амплитуд, интенсивностей мод и их дисперсии. В работе [2] было отмечено, что если нормировать все величины, имеющие размерность

Смешанный член ряда (2) < I₀₁ (0, z)>

z		0	0,2	0,4	0,6	0,8
$\langle I_{01} \rangle$	D=0 $D=1,216$ $D=4,671$	4,00 3,69 3,30	2,24 1,92 1,42	-1,00 -0,93 -0,78	-2,24 -1,96 -1,53	-0,99 -0,91 -0,74





Фиг. 1

Фиг. 2

Фиг. 1. Профили $\langle I_{nn}(z_0,z)\rangle$, $n{=}0$, 1; $z_0{=}0$. Сплошные линии $-D{=}0$. Для $n{=}0:1-D{=}1,216,\ 2-D{=}4,671$. Для $n{=}1:3-D{=}1,216,\ 4-D{=}4,671$

Фиг. 2. Профили $\langle I_{nn}(z_0, z) \rangle$, $n{=}0$, 1; $z_0{=}2/3$. Сплошные линии $-D{=}0$, $1-D{=}1,216$, $2-D{=}4,671$; $a-n{=}0$, $6-n{=}1$

длины на H, то задача (3) характеризуется одним безразмерным параметром $d=2\sigma_{\epsilon}^2k^4l/H$, где $k=\omega H/c$, или коэффициентом диффузий нулевой моды $D=3d/4\pi^2$. Расчеты проводились для тех же значений D, что и в работе [2]. При параметрах, характерных для океана, $\sigma_{\epsilon}^2=5\cdot 10^{-9}$, $H\sim 5$ км и на частоте звука $\nu=\omega/2\pi\sim 100$ Гц D принимает значения порядка единицы [2].

Зависимость средних амплитуд $\langle A_n(z_0,z)\rangle$ и интенсивностей $\langle I_{nn}(z_0,z)\rangle$ мод от положения источника z_0 имеет качественное сходство. Эту зависимость $\langle A_n(z_0,z)\rangle$ и $\langle I_{nn}(z_0,z)\rangle$ от z_0 проследим на примере интенсивностей. На фиг. 1 даны средние интенсивности $\langle I_{nn}(0,z)\rangle$, n=0, 1 для двух значений D (1,216 и 4,671). Из графиков видно, что при расположенном на дне источнике наличие тонкой структуры скорости звука приводит к перераспределению энергии волны из всей толщи океана в придонный слой, т. е. формируется придонный волновод. По-видимому, это следствие того, что в невозмущенном состоянии собственные функции всех мод имеют на дне максимум и усиливают друг друга. В табл. 1 представлен смешанный член ряда (2) $\langle I_{01}(0,z)\rangle$, описывающий корреляцию амплитуд нулевой и первой мод. С увеличением D корреляция амплитуд убывает. В случае $z_0=1/3$ (ноль невозмущенной первой моды) средняя интенсивность нулевой моды убывает с ростом D, а первой — возрастает (табл. 2). Если

Профили $\langle \boldsymbol{I}_{nn} \; (\boldsymbol{z}_0, \; \boldsymbol{z}) \rangle$ при $\boldsymbol{z}_0 = 1/3$

Таблица 2

		z	0	0,2	0,4	0,6	0,8
$\langle I_{nn} \rangle$	n=0	$D=0 \\ D=4,671$	3,03 2,40	2,74 2,18	1,97 1,81	1,03 1,06	0,27 0,35
	n=1	D = 4,671	0,54	0,31	0,18	0,32	0,31

Примечание. При D=0, $z_0=1/3$, $(I_{11}(z_0, z))\equiv 0$.

Таблица 3

Среднеквадратичное отклонение интенсивности нулевой моды $\sigma_{I_{aa}}$ при $z_0=0$

	z	0	0,2	0,4	0,6	0,8
σ _{I00}	D=1,216	4,28	2,21	0,66	0,38	0,19
	D=4,671	9,18	3,33	0,98	0,60	0,31

же источник находится в максимуме первой моды $(z_0=2/3, \, \text{фиг. 2})$, то происходит обратный процесс. Таким образом, обмен энергией между модами идет в сторону выравнивания интенсивностей мод при увеличении D. В табл. 3 дан профиль среднеквадратичного отклонения интенсивности нулевой моды $\sigma_{I_{00}} = \langle [(I_{00} - \langle I_{00} \rangle)^2] \rangle^{\eta_2}$ при $z_0 = 0$. Из этой таблицы видно, что при $D \sim 1$ значения среднеквадратичного отклонения интенсивности $\sigma_{I_{00}}$ нулевой моды сравнимы с ее средними значениями $\langle I_{00} \rangle$ (см. фиг. 1), а при увеличении D даже превосходят их в области z=0.

Автор выражает благодарность В. И. Кляцкину за руководство и вни-

мание к работе.

ЛИТЕРАТУРА

1. *Бреховских Л. М., Лысанов Ю. П.* Теоретические основы акустики океана. М.: Гидрометеоиздат, 1982. С. 131.

 Голанд В. И., Кляцкин В. И. О статистике собственных значений и собственных функций двухточечной краевой волновой задачи // Акуст. журн. 1988. Т. 34. № 5. С. 828-833.

3. Кляцкин В. И. Метод погружения в теории распространения волн. М.: Наука, 1986. 256 с.

the state of the s

THE REPORT OF THE RESIDENCE OF THE PROPERTY OF THE PARTY OF THE PARTY

1980. 250 C.

Тихоокеанский океанологический институт ДВО Академии наук СССР Поступила в редакцию 28.VIII.1987