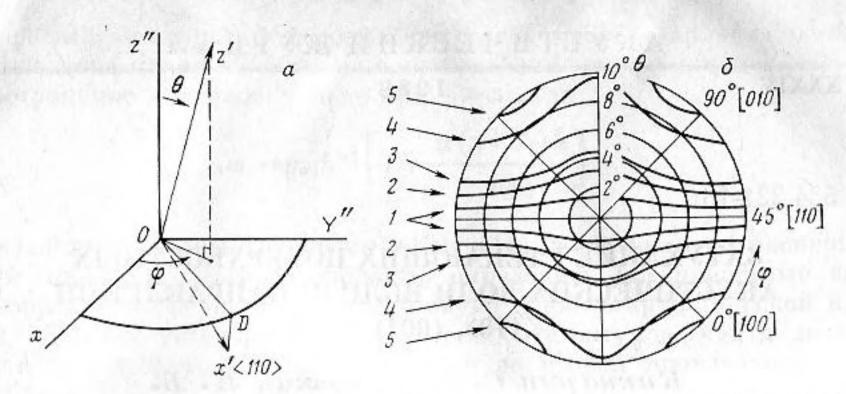
Tom XXXIV

1988

Вып. 6

УДК 534.221-16

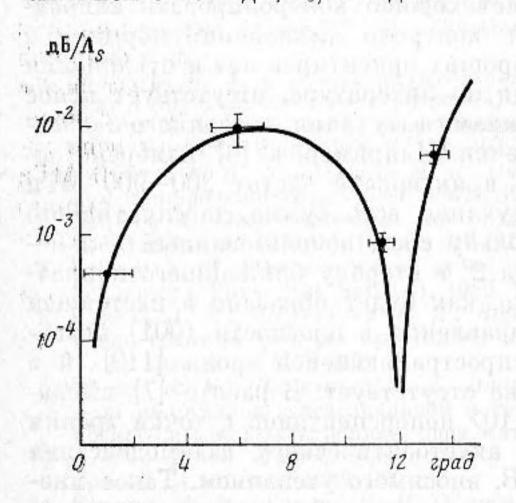

ЗАТУХАНИЕ УТЕКАЮЩИХ ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛН ВБЛИЗИ НАПРАВЛЕНИЙ <110>, (001) GaAs

Киккарин С. М., Якозкин И. Б.

Исследовано количественное соотношение между диссипативным затуханием и затуханием, связанным с утечкой, для ПАВ, принадлежащей к ветви утекающих волн вблизи направления (110) плоскости (001) арсенида галлия. Для этой ветви колебаний экспериментально подтверждено наличие особой точки с нулевым утеканием в направлении (110)+12° плоскости (001).

Поверхностные акустические волны (ПАВ) на арсениде галлия в направлении (110) плоскости (001), принадлежащие к ветви утекающих (или псевдоповерхностных) волн, к настоящему времени изучены довольно подробно (см., например, [1-5]). Известно, что точно в направлении (110) плоскости (001) утекание отсутствует и затухание ПАВ обусловлено обычными диссипативными механизмами. В реальном случае неизбежны отклонения как направления распространения ПАВ от (110), так и отклонения плоскости кристалла от (001). И то и другое приводит к возникновению утекания и связанного с ним дополнительного затухания. Причем если направление (110), являясь направлением естественного скола арсенида галлия, позволяет хорошо контролировать направление распространения ПАВ, то для контроля отклонения нормали к реальной поверхности от оси [001] хороших ориентиров нет и отклонения величиной $1-2^{\circ}$ вполне обычны. Судя по литературе, отсутствует ясное понимание соотношения между величинами затухания, связанного с обычными механизмами, и затуханием утечки. Например, в [6] измерено затухание ПАВ на GaAs (110), (001) в интервале частот 200-900 МГц и утверждается, что измеренное затухание есть сумма диссинативного затухания и затухания утечки, поскольку срез, использованный в измерениях «отклонялся от (001)-среза на 2° в сторону ближайшего направления, эквивалентного (110)». Однако, как будет показано в настоящей работе, два эквивалентных <110> направления в плоскости (001) неравнозначны по отношению к ПАВ, распространяющейся вдоль [110], и в случае наклона в сторону [110] утечка отсутствует. В работе [7] высказывается мнение, что направление (110) неперспективно с точки зрения использования для широкополосного акустооптического взаимодействия из-за дополнительного затухания ПАВ, вносимого утеканием. Такое мнение, на наш взгляд, также основывается на незнании соотношения между различными механизмами затухания. В [3] рассчитана зависимость затухания утечки от направления распространения ПАВ в плоскости (001) и обнаружена интересная особенность данной ветви колебаний, заключающаяся в том, что в дополнение к направлению (110) затухание утечки обращается в нуль и в направлении (110>+12°. Экспериментальное подтверждение этого факта наряду с расчетом величины затухания утечки при отклонении реальной плоскости от (001) является целью настоящей работы.

Рассмотрим сначала затухание, связанное с утечкой, при отклонений от плоскости (001). Строго говоря, в такой плоскости уже не содержится (110). Отклонение реальной плоскости от кристаллографической плоскости (001) можно задать двумя углами θ, φ (см. фиг. 1, a). Следует заметить, что на полупространстве вследствие подобия ПАВ с различными



Фиг. 1. Затухание, связанное с утечкой, при отклонении реальной плоскости от (001): $a-\theta$, $\varphi-$ углы, определяющие отклонение кристаллографической оси кристалла от нормали реальной поверхности OZ'' (X''OY''- плоскость реальной поверхности), ПАВ распространяется вдоль направления OD, лежащего в плоскости естественного скола Z'OX' (OX' есть [110]). $\theta-$ величина отклонения, $\varphi-$ направление отклонения; $\delta-$ изолинии равного затухания, связанного с утечкой, в полярных координатах θ , φ : 1-5 соответствуют величинам затухания $1\cdot 10^{-5}$, $5\cdot 10^{-5}$, $1\cdot 10^{-4}$, $5\cdot 10^{-4}$, $1\cdot 10^{-3}$ дБ/ Λ_s

длинами волн затухание утечки на длину волны есть величина постоянная и ее удобно измерять в дБ/Л_s. (Иначе говоря, затухание утечки пря-

мо пропорционально частоте ПАВ.)

На фиг. 1, δ приведены рассчитанные изолинии одинакового затухания утечки (в дБ/ Λ_s) при небольших (\leq 10°) отклонениях нормали к реальной плоскости от оси [100] в полярных координатах (θ , φ). Как видно из фиг. 1, a, при наклоне нормали к плоскости на небольшой угол $\theta\sim1-2^\circ$ в произвольном направлении φ не сопровождается скольнибудь существенным затуханием утечки. Затухание при этом ограничено величиной $5\cdot10^{-5}$ дБ/ Λ_s , что даже на частоте в 1 ГГц не превышает 0,2 дБ/

Фиг. 2. Затухание, связанное с утечкой при отклонении от (110) в плоскости (001) GaAs. Сплошная линия — расчет. Экспериментальная точка вблизи (110) «посажена» на расчетную кривую. В таком случае колебания затухания в прочих направлениях хорошо описываются расчетной кривой

/см. Совокупное же затухание включающее в себя обычные диссипативные механизмы, измеренное в [6], зависит от частоты как $f^{1,5}$ и составляет на частоте в 1 ГГц около 10 дБ//см. Иными словами, при небольших отклонениях (\sim 1°) реальной плоскости от (001) затуханием утечки можно пренебречь. (В работе [6] затухание измерялось на образце с отклонением ϕ =2°.)

Рассмотрим теперь величину затухания, связанного с утеканием, в плоскости (001), направление распространения составляет некоторый угол с направлением (110). Зависимость утекания для GaAs в такой геометрии было рассчитано в Расчетная кривая приведена фиг. 2. Затухание, связанное с утечкой, имеет три характерных направления (см. фиг. 2): <110> — утекание <110>+6° — направлеотсутствует, ние, соответствующее локальному максимуму затухания, и <110>+12°-

в соответствии с расчетом затухание утечки снова обращается в нуль. В этих характерных направлениях затухание было измерено экспериментально.

ПАВ на GaAs ориентации (001) возбуждалась встречно-штыревыми преобразователями (ВШП), изготовленными фотолитографией. Преобра-

зователи ориентированы в необходимых направлениях и эффективно возбуждали ПАВ через собственный пьезоэффект GaAs, как на основной частоте, так и на гармониках. Это позволило измерить затухание в интервале частот от 100 до 550 МГц. Направление распространения ПАВ определялось по ориентации штырей ВШП относительно скола подложки, обозначающего направление (110). Измеренные направления распространения ПАВ в четырех исследованных подложках составляли (110)+1°; (110)+6°; (110)+11,4°; (110)+13,4°.

Измерения затухания ПАВ осуществлялись следующим образом. Лазерным пучком, сфокусированным в пятно диаметром ≤50 мкм, по дифракции на отражение [8], измерялся профиль ПАВ через каждые 1 мм пути распространения на протяжении 1 см. Интегрированием профиля высчитывалась энергия ПАВ в каждом сечении, затем через полученные точки зависимости энергии ПАВ (1) от расстояния (x) до ВШП методом наименьших квадратов проводилась кривая $I=I_0\times\exp(-\alpha x)$, где α определяет величину затухания. Сбор и обработка экспериментальных данных производились аппаратурой, сопряженной с микроЭВМ. Пластины полуизолирующего GaAs (о~106 Ом·см), использованные в данных измерениях, подвергались лишь механической полировке и имели общее затухание ПАВ несколько большее, чем достигнутое в [6]. Результаты измерений сведены в таблицу. Измеренное затухание есть сумма затуханий, связанных с диссипативными механизмами и утеканием. Согласно расчету, величина затухания, связанного с утечкой в направлении (110)+1°, равна $3.97 \cdot 10^{-4}$ дБ/ Λ_s . На частоте 550 МГц это не превышает 0,8 дБ/см, что составляет незначительную часть измеренного затухания. Иными словами, затухание, измеренное в этом направлении, обеспечивается диссипативными механизмами. Это дает возможность отделить утекание от других механизмов затухания, если предположить, что в прочих направлениях диссипативные затухания имеют ту же величину, что и в (110)+ +1°. Затухание в направлениях (110)+6°; (110)+11,4°; (110)+13,4° за вычетом диссипативного затухания, отнесенное к длине волны ПАВ, составляет соответственно $(9,2\pm3,2)\cdot10^{-3}$; $(7,8\pm1,7)\cdot10^{-4}$; $(4,9\pm0,7)\cdot$ $\cdot 10^{-3}$ дБ/ Λ_s . Величины и их разброс подсчитаны по трем высшим измеренным частотам (см. таблицу). На частотах 110 и 140 МГц затухание мало и сравнимо с величиной погрешности измерения, которая составила около ±1,0 дБ/см. Полученные величины хорошо согласуются с расчетом (см. фиг. 2). Действительно, в направлении (110>+6° в диапазоне частот, представляющих практический интерес, утечка есть преобладающий механизм затухания ПАВ, тогда как в направлении <110>+11,4° затухание утечки практически отсутствует. Дальнейшее даже небольшое отклонение (<110>+13,4°) приводит к резкому увеличению утекания.

В наиболее общем случае, на реальной подложке имеет место комбинация отклонения плоскости поверхности кристалла от кристаллографической плоскости (001) и отклонения направления распространения ПАВ от (110). Однако, как следует из сравнения величин (фиг. 1 и 2), при небольших отклонениях одного порядка затухание утечки, связанное с отклонением от плоскости (001), на порядок меньше утекания, возникающего из-за отклонения направления распространения ПАВ от (110). Последнее в свою очередь при углах, больших 2°, на частотах ПАВ порядка сотен МГц сравнимо с затуханием, связанным с диссипативными механизмами. Практический вывод настоящей работы заключается в том,

Частота ПАВ, МГц	Затухание ПАВ, дБ/см, при отклонении от (110), гра			
	1±1	6±1	11,4±0,5	13,4±0,5
110	0,6	0,6	1,4	1,3
140	1,3	100	1,4 2,3 3,3	3,1
330	2,6	10,6	3,3	8,5
430	4,6	13,9	5,0 7,5	9,9
550	7,0	32,6	7,5	16,1

United Street

DESCRIPTION AND

что для минимизации затухания утечки необходимо тщательно контролировать направление распространения ПАВ, тогда как точная ориентация плоскости менее важна. При отклонении направления распространения ПАВ от <110> величиной меньше 2° затуханием утечки можно пренебречь.

ЛИТЕРАТУРА

- 1. Фарнелл Дж. Физическая акустика. Т. VI. Гл. 3. // Под ред. Мезона У. М.: Мир, 1973.
- 2. Deacon J. M., Heighway J. Acoustic surface wave propagation on gallum arsenide // Electron. Letters. 1972. V. 8. N 1. P. 6-7.
- 3. Penunuri D., Lakin K. M. Leaky surface wave propagation on Si, GaAs, GaP, Al₂O₃ and Quartz // IEEE Proc. Ultrason. Symp. 1975. P. 478-483.
- 4. Сафонов В. А., Витухновский А. Г., Лямов В. Е., Солодов И. Ю., Сулейманов С. Х. Распространение поверхностных волн в кристаллах // Упругие поверхностные волны. Новосибирск: Наука, 1974.
- 5. Киккарин С. М., Петров Д. В., Яковкин И. Б. Акустические волны утечки на GaP // Акуст. журн. 1984. Т. 30. № 5. С. 648-652.
- Melloch M. R., Wagers R. S. Propagation loss of the acoustic pseudosurface wave on (ZXt)45° GaAs // Appl. Phys. Letters. 1983. V. 43. N 11. P. 1008-1009.
- Yamazaki O., Tsai C. S., Umeda M., Yap L. S., Lii C. J., Wasa K., Merz J. Guided-wave acoustoopic interaction in GaAs-ZnO composite structure // IEEE Proc. Ultrason Symp. 1982. P. 418-421.
- 8. Яковкин И. Б., Петров Д. В. Дифракция света на акустических поверхностных волнах. Новосибирск: Наука, 1979.

Институт физики полупроводников Сибирского отделения Академии наук СССР Поступила в редакцию 29.XII.1987