Том 38

1992

Вып. 4

письма в РЕДАКЦИЮ

УДК 534.222

© 1992 г. С.В. Зименков, В.Е. Назаров

ЗАВИСИМОСТЬ КОЭФФИЦИЕНТА ЗАТУХАНИЯ УЛЬТРАЗВУКА В ОТОЖЖЕННОЙ МЕДИ ОТ ЧАСТОТЫ ЗВУКОВОГО ВОЗДЕЙСТВИЯ

В работе [1] при исследовании распространения слабого высокочастотного (ВЧ) импульса в поле мощной низкочастотной (НЧ) волны накачки в резонаторе из отожженной меди было обнаружено его нелинейное затухание. Описание этого эффекта проводится в рамках диссипативной акустической нелинейности среды, для чего предполагается, что коэффициент диссипации в уравнении:

$$U_{tt} - C_0^2 U_{xx} - \beta U_{txx} = 0, \tag{1}$$

описывающем распространение ВЧ импульса, зависит от локальной амплитуды деформации $\epsilon_0(x)$ волны накачки в резонаторе следующим образом:

$$\beta(x) = \beta_0 \left[1 + a \, \epsilon_0(x) \right], \tag{2}$$

где β_0 — коэффициент диссипации среды в отсутствие накачки, a = const, U = смещение, $C_0 = \text{скорость}$ распространения импульса в невозмущенной среде. (Как показано в этой же работе, для описания обнаруженного эффекта дисперсия волны в стержне не прикципиальна, поэтому здесь она учитываться не будет.)

В настоящей работе, с целью уточнения зависимости (2), приводятся результаты экспериментальных исследований нелинейного затухания слабого ВЧ-импульса в поле НЧ-волны накачки в стержневом резонаторе из отожженной бескислородной меди МО (99,97% Си) при различных частотах F его возбуждения. Длина стержня L=50 см, диаметр 8 мм. Стержень отжигался при температуре 500° С в течение 2 часов в воздушной атмосфере. Исследования проводились по схеме, описанной в работе [1], на первых четырех модах стержня, резонансные частоты F_n которых составляли: 1,9 кГц, 5,5 кГц, 9,1 кГц и 12,8 кГц. Длительность ВЧ-импульса составляла 80μ с, частота $f \approx 200$ кГц.

На рис. 1 в логарифмическом масштабе приведены экспериментальные зависимости коэффициента нелинейного затухания $\kappa(2L)$ импульса от амплитуды деформации $\epsilon_0 = \max \epsilon_0(x)$ волны накачки при различных частотах возбуждения резонатора. (Прямые линии соответствуют линейной зависимости κ от ϵ .) Видно, что при одном и том же значении ϵ_0 коэффициент затухания растет с ростом частоты F_n возбуждения резонатора. Используя этот результат, построим зависимости $\kappa(2L)$ от F_n при различных ϵ_0 (рис. 2). Из этих рисунков следует, что $\kappa(2L)$ удовлетворяет зависимости $\kappa(2L) = \epsilon_0 [a' \div 2\pi b' F_n]$, или

$$\kappa(2L) = a\epsilon_0 + b\dot{\epsilon}_0, \tag{3}$$

где $\dot{\epsilon}_0 = 2\pi F_n \epsilon_0$ — амплитуда скорости деформации, a', b' = const. На основании вышеизложенного приходим к выводу, что вместо выражения (2) необходимо положить:

$$\beta(x) = \beta[1 + a\epsilon_0(x) + b\dot{\epsilon}_0(x)], \tag{4}$$

b = const.

Для резонатора, используемого в эксперименте, деформация $\epsilon(x,t)$ определяется выражением:


$$\epsilon(x,t) = \epsilon_0 \cos K_n x \sin \Omega_n t, \tag{5}$$

где $K_n = \Omega_n/C_0$, $K_nL = \pi(n-1/2)$, n — номер моды. Поэтому $\epsilon_0(x) = \epsilon_0 |\cos K_n x|$, $\dot{\epsilon}_0(x) = \Omega_n \epsilon_0 |\cos K_n x|$.

В этом случае, аналогично [1], получаем выражение для коэффициента затухания $\kappa(2L)$:

$$\kappa(2L) = \frac{2\delta L \epsilon_0}{\pi} (a + b\Omega_n), \tag{6}$$

где
$$\delta L = \beta_0 \frac{\omega^2 L}{c_0^3}$$
.

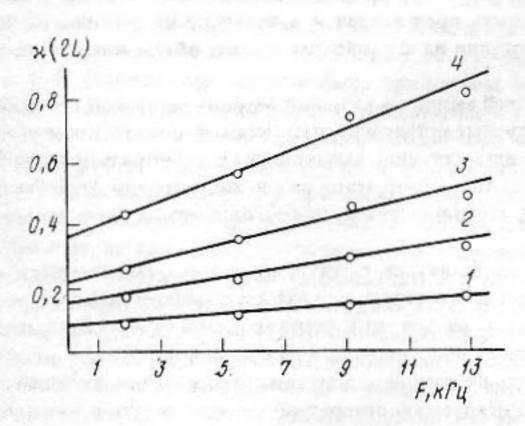


Рис. 1. Зависимость $\kappa(2L)$ от ϵ_0 при различных частотах F возбуждения резонатора: $1-F_1=1.9$ кГц; $2-F_2=5.5$; $3-F_3=9.1$; $4-F_4=12.8$ кГц

Рис. 2. Зависимость $\kappa(2L)$ от F при различных ϵ_0 : $I - \epsilon_0 = 2 \cdot 10^{-6}$; $2 - \epsilon_0 = 4 \cdot 10^{-6}$, $3 - \epsilon_0 = 6 \cdot 10^{-6}$, $4 - \epsilon_0 = 10^{-5}$

(Величина δL соответствует значению затухания ВЧ-импульса на длине 2L (без накачки) и определялась экспериментально по отношению амплитуд соседних импульсов, отраженных от закрепленного торца стержня. В эксперименте $\delta L \approx 1$.)

Из сравнения полученной зависимости (6) с экспериментальными результатами находим параметры диссипативной акустической нелинейности отожженной меди:

$$a = 3.5 \cdot 10^4$$
, $b = 3.6$ c.

Таким образом, на основании экспериментальных исследований в указанном диапазоне частот удалось установить зависимость коэффициента диссипации β ВЧ-импульса от параметров волны накачки.

Такие исследования представляются полезными для развития феноменологического подхода в описании обнаруженного эффекта и создания физической модели явления.

Авторы благодарят Л.А. Островского за интерес к работе и ценные замечания.

СПИСОК ЛИТЕРАТУРЫ

 Назаров В.Е. Нелинейное затухание звука на звуке в металлах // Акуст. журн. 1991. Т. 37. № 6. С. 1177-1182.

Институт прикладной физики Российской Академии наук Поступило в редакцию 04.11.91