СПИСОК ЛИТЕРАТУРЫ

 Urick R. J. Reverberation-derived Scattering Strength of the Shallow Sea Bed//J. Acoust. Soc. Amer. 1970. V. 48. № 1. P. 392.

Акустический институт им. Н. Н. Андреева Российской академии наук Поступило в редакцию 25.11.92

УДК 534.21

© 1993 г. А. С. Белогорцев, С. А. Рыбак

К ОЦЕНКЕ ВРЕМЕНИ ЗАТУХАНИЯ КОЛЕБАНИЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

При исследовании упругих свойств цилиндрических оболочек в процессе рассеяния ими звуковых волн обычно применяется импульсный режим облучения [1]. Сопоставление с расчетными моделями при этом, как правило, проводится в установившемся режиме колебаний. В этих условиях для выявления резонансных свойств колебаний длительность импульса падающей волны должна быть больше, чем время установления стационарного режима, которое в области резонанса определяется его добротностью. В отсутствие затухания в материале оболочки добротность зависит от энергии сигнала, переизлученного оболочкой.

Пусть на цилиндрическую оболочку под углом скольжения θ_0 падает плоская волна, при этом на частоте ω_p для некоторой нормальной волны, имеющей в окружном направлении номер m и продольное волновое число k_z , наблюдается условие пространственного совпадения [2]: $k_0 \cos \theta_0 = k_z$, k_0 — волновое число в воде. Резонансный характер амплитуды возбуждаемой нормальной волны определяется выражением $W_m \sim R_m = 1/(Z_y^m + Z_s^m)$, где Z_y^m — импеданс упругих колебаний цилиндрической оболочки, Z_s^m — импеданс излучения цилиндрической оболочки.

Время установления колебаний, равное времени релаксации за счет потерь в материале оболочки и излучения сигнала в воду τ , а также коэффициент затухания $\eta = 1/\omega \tau$ можно найти либо из уравнения $Z_y^m(\omega + i/\tau) + Z_z^m(\omega + i/\tau) = 0$, либо по ширине резонансного максимума. Если $\Delta\omega_1$ и $\Delta\omega_2$ таковы, что

$$|R_m (\omega_p - \Delta \omega_1)| = |R_m (\omega_p + \Delta \omega_2)| = 0.7 \cdot |R_m (\omega_p)|,$$

το η = (Δω₁ + Δω₂)/ω_p.

С использованием этих выражений проводилась оценка коэффициента затухания η для двух типов оболочек с отношением толщины к радиусу h/R = 0.286 и h/R = 0.063.

Ниже приведены результаты расчета для стальной оболочки толщиной h/R = 0.286 и частоты падающего сигнала $\Omega_{np} = \omega R/c_{np} = 0.83$ ($k_0R = 2.93$), где c_{np} — скорость продольных волн в пластине, сделанной из материала оболочки:

μ	θο	η	η2
0 1,0	72°	0,0153	0,054
0,67	78°	0,0153	0,027
3 1,75	55°	0,0150	0,059
	1,0 0,67	1,0 72° 0,67 78°	1,0 72° 0,0153 0,67 78° 0,0153

 $\mu = k_z R$ — безразмерное волновое число нормальной волны, η_l и η_l — коэффициенты затухания волн для оболочки, находящейся в вакууме и в воде соответственно. При $\theta_0 = 78^\circ$ в оболочке возбуждается квазисдвиговая волна, при $\theta_0 = 72^\circ$, 55° — квазиизгибные волны [2]. Отличие величины затухания от нуля для оболочки в вакууме объясняется заложенным в расчет затуханием в материале оболочки $\eta_\mu = 0.03$. Из сравнения η_l и η_l видно увеличение коэффициента затухания за счет излучения энергии в воду.

Представляют интерес расчеты, проведенные для стальной оболочки толщиной h/R = 0.063 и частоты падающего сигнала $\Omega_{\rm пp} = 1.01$ ($k_0R = 3.57$) при m = 1. В этом случае, возможно существование двух волн: квазисдвиговой, имеющей $\mu_1 = 1.03$, и квазиизгибной с $\mu_2 = 6.23$. Поскольку квазиизгибная волна имеет продольное волновое число большее, чем волновое число в воде ($\mu_2 > k_0R$), то излучение у такой волны, бегущей по бесконечному цилиндру, отсутствует. Коэффициент затухания, определяющийся только потерями в материале оболочки, в этом случае равен $\eta = 1.78 \cdot 10^{-2}$. Если цилиндр имеет конечную длину L, то за счет наличия краев такая волна начинает излучать. Для оценки величины затухания в такой ситуации необходимо использовать выражение для импеданса излучения

 $Z_{s, \text{ огр}}^m$ ограниченной оболочки [3]. Величина коэффициента затухания в этом случае для оболочки длиной L/R = 6.06 оказывается равной $\eta = 2 \cdot 10^{-2}$, приближаясь с увеличением длины оболочки к значению в вакууме. Так, для L/R = 14.7 $\eta = 1.85 \cdot 10^{-2}$.

Значение коэффициента затухания для квазисдвиговой волны, имеющей продольное волновое число, меньшее, чем волновое число в воде ($\mu_1 < k_0 R$), много больше ($\eta = 11 \cdot 10^{-2}$), чем для квазиизгибной волны за счет излучения в воду.

СПИСОК ЛИТЕРАТУРЫ

- Бугаев В. В., Музыченко В. В., Паникленко А. П. К вопросу об амплитуде резонансного рассеяния звука ограниченными цилиндрическими оболочками//Акуст. журн. 1986. Т. 32. № 4. С. 523—525.
- Музыченко В. В., Рыбак С. А. Низкочастотное резонансное рассеяние звука ограниченными цилиндрическими оболочками. Обзор//Акуст. журн. 1988. Т. 34. № 4. С. 561—577.
- 3. Белогорцев А. С., Музыченко В. В. Влияние ограниченности цилиндрической оболочки на амплитуду обратного рассеяния//Акуст. журн. 1991. Т. 37. № 2. С. 228—234.

Акустический институт им. Н. Н. Андреева Российской академии наук Поступило в редакцию 11.11.92

УДК 534.231.1

© 1993 г. О. Э. Гулин, В. В. Темченко

О ВЛИЯНИИ ГРАНИЦ В ОДНОМЕРНОЙ ЗАДАЧЕ РАССЕЯНИЯ ИМПУЛЬСОВ НА СЛОЕ ПЕРИОДИЧЕСКИ НЕОДНОРОДНОЙ СРЕДЫ

В работе [1] на основе численного моделирования рассматривалась задача рассеяния временных импульсов различной формы на периодически неоднородном полупространстве. Настоящее сообщение продолжает исследования [1], [2] и посвящено анализу особенностей, возникающих в процессах обратного рассеяния при учете конечных размеров среды.

Пусть на слой среды $L_0 \le z \le L$ с профилем скорости звука $C(z) = C_0(1 + M \times \cos Kz)$ из области z > L с $C(z) = C_2$ ($C(z < L_0) = C_1$) в момент времени t = +0 падает импульс $\phi(T)$. Тогда внутри слоя звуковое поле U(z, t) удовлетворяет волновому уравнению с соответствующими граничными условиями (см. [1]). На границе слоя z = L имеем $U(L, t) = \phi(t) + R(t)$, где R(t) — обратно рассеянный сигнал. В

безразмерных координатах $\tau = t \times T^{-1}$, $x(z) = T^{-1} \int_{L_0}^z dz' / C(z')$ (0 $\leq x \leq l$) поле U(L, t) можно

представить в виде [1]

$$\widetilde{U}(l,\tau) = \widetilde{\varphi}(+0) \Psi_l(\tau) + \int_{+0}^{\tau} d\xi \Psi_l(\tau - \xi) \frac{\partial \widetilde{\varphi}(\xi)}{\partial \xi}.$$

Здесь функция $\Psi_i(t)$ описывает обратно рассеянное поле при падении на слой скачка $\widetilde{\phi} = \theta(t)$ ($\theta(t)$ — единичная функция Хевисайда), а $T = 2\pi K^{-1}C_0^{-1}(1-M^2)^{-1/2}$ — время прохождения фронтом импульса одного периода профиля $\widetilde{C}(x) \equiv C(z)$.

Укажем основные особенности поведения функций $\Psi_l(t)$ и R(t) для рассматриваемой задачи. Ограниченный характер среды вносит изменения в поведение функции $\Psi_l(t)$ при $t \ge 2l$ по сравнению со случаем полупространства, когда $\Psi_l(t)$ при $t \to \infty$ стремится к стационарному уровню, зависящему от характеристик профиля C(x) [1]. Так, если $C_1 \ne C(0)$ и $C_2 = C(x)$ $I_{x=l-0}$, то в момент t = 2l наблюдается скачок функции $\Psi_l(t)$ величиной $R_1 = (C_1 - C(0))/(C_1 + C(0))$ с последующим переходом к стационарному состоянию, связанному с многократным влиянием границ [2]

$$\lim_{\tau \to \infty} \Psi_I(\tau) = 2C_1/(C_1 + C_2) = 1 + (C_1 - C_2)/(C_1 + C_2). \tag{1}$$

При согласованной границе x = 0 (т. е. $C_1 = C(0)$), когда на ней имеется разрыв производной dC(x)/dx, функция $\Psi_{\ell}(\tau)$ стремится к уровню (1), испытав при $\tau = 2l$ лишь разрыв производной $\partial \Psi_{\ell}(\tau)/\partial \tau$. Увеличение амплитуды M в обоих случаях затягивает процесс установления режима (1).

Для бесконечных ($\tau_1 \to \infty$) импульсов $\widetilde{\phi}(\tau) = (\theta(\tau) - \theta(\tau - \tau_1)) \times B \times \sin(\Omega T \tau + \phi_0)$ согласованность границы x = 0 приводит к тому, что после момента $\tau = 2l$ для $\widetilde{R}(\tau)$ начинается процесс