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The phenom enon of wave scattering in an inhom o­
geneous medium lies at the basis of our notion of the 
surrounding world. Although its basic concepts were 
formulated by Tyndall and Rayleigh as far back as in 
the 19th century, it still attracts the attention of 
researchers [1—5]. For example, in solving the refer­
ence problem of sound scattering by a fixed sphere in 
a viscous fluid [6], it was found that neglect of the vis­
cous term  in the Curle equation may lead to erroneous 
estimates of the dipole components of the scattered 
field. Requirements concerning the strictness of the 
analysis of such problems are explained by the crucial 
effect of wave scattering by the simplest inhomogene­
ities on adequate estimates of many physical phenom ­
ena, in particular, low-frequency sound scattering in a 
microinhomogeneous medium. This phenomenon is 
well known and seems to be rather simple at first 
glance. For example, in a forest, one can see through 
very short distances, because, for the small wavelength 
of light, the scattering’s cross section of a leaf is large 
and is determined by the double area of the leaf. By 
contrast, sounds in a forest can be heard through large 
distances, because, according to the Rayleigh law, for 
the long sound waves, the scattering’s cross section 
makes an infinitesimal fraction of the leaf area. Anal­
ogously, in fog or rain, one can clearly see objects only 
at arm ’s length while the sounds can be heard at large 
distances, which are almost identical to those observed 
in fair weather.

These examples illustrate the scattering of sound by 
numerous small bodies. Evidently, the frequency spec­
trum  of the field scattered by fixed bodies is the same 
as that for a single scatterer. In can be shown that, in 
the case of chaotically positioned scatterers, the total

scattered power is identical to the power scattered by a 
single body multiplied by the total num ber o f bodies
[1, 5].

Microinhomogeneous media represent sets of scat- 
terers spaced at distances that are small compared to 
the wavelength. At the same time, the minimal dis­
tance between the particles considerably exceeds the 
particle size. If  identical inhomogeneities were uni­
formly distributed in a medium with a homogeneous 
concentration, e.g., in the form of a periodic lattice, 
no scattering would be observed and only a slight 
change in the sound propagation’s velocity would 
occur [1]. As is known, in this case, the side spectra of 
a small-scale lattice represent rapidly attenuating 
inhomogeneous waves. According to the optical anal­
ogy, in a regular crystal, light waves scattered by indi­
vidual molecules cancel each other everywhere except 
for the direction of the initial wave.

However, we are interested in the chaotic distribu­
tion of obstacles with their concentration being con­
stant only on the average. The theory of low-frequency 
sound scattering in such media is based on the laws 
that govern the scattering of sound by an individual 
inhomogeneity whose size is small compared to the 
wavelength: ka <  1 (k is the wave num ber and a is the 
characteristic size of the particle). For inhomogene­
ities at rest, the classical Rayleigh law is valid [1, 2, 6, 
and 7]. According to this law, the scattering’s cross 
section a  of an inhomogeneity is proportional to the 
cross-sectional area of the body na2 multiplied by the 
small quantity (ka)4.

A microinhomogeneous medium can be character­
ized by the concentration of scatterers n and the spe-
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cific scattering’s cross section ho, which determines 
the scattering property of a unit volume of the scatter­
ing medium. The wave intensity decreases due to the 
scattering by inhomogeneities as an exponential func­
tion of distance x: W  =  W0e-nax. The logarithmic 
attenuation у characterizing the sound intensity’s 
decay with distance in terms of decibels per unit length 
of the sound’s propagation path has the form у = 
4.3ho. For the m ean radius a of inhomogeneities and 
their mean concentration n, which is expressed 
through the volume of an inhomogeneity and the total 
volume’s fraction т occupied by the material of inho­
mogeneities in the medium as n =  Зт/4яаЗ, the quan­
tity у is determined by the formula у = 1.04т о /а З. For 
example, if we apply the Rayleigh law in classical form 
to drops of water with a radius of 1 m m  and assume 
that the drops are chaotically distributed in air so that 
the water content in air is 5% (т =  0.05), and the atten­
uation у will be у = 1.З1 • 102(ka)4 per m eter or у = 
1.З1 • 105 (ka)4 per kilometer. The attenuation rapidly 
decreases with decreasing frequency. In  the frequency 
band within 100—1000 Hz, which determines the 
speech intelligibility, у is as small as 1.87 • 10-6 to 
1.87 • 10-2 dB/km.

At the same time, it is evident that most of the ele­
ments of natural microinhomogeneous media are in 
motion. For example, the leaves of trees are moved by 
wind and the droplets of fog or rain move under the 
effect of gravity. Sometimes, the m otion in the 
medium is of an oscillatory character, such as in the 
case of leaves moved by wind [5], and, sometimes, it 
represents a uniform gravity drop, such as in the case 
of fog or rain droplets [8]. For radio or light waves, the 
m otion-related corrections to the scattering’s cross 
sections are negligibly small and can be ignored (the 
corrections are proportional to the ratio of the velocity 
of scatterer m otion to the velocity of wave propaga­
tion). However, for sound waves, such corrections, 
being proportional to the hydrodynamic M ach num ­
ber, are considerable and should be taken into 
account. In addition, the idea that the frequency spec­
trum  of the field scattered by many bodies is identical 
to that produced by a single scatterer fails in the case of 
moving bodies. According to the Doppler effect, the 
spectrum of the scattered field depends on the angle of 
the wave incidence on the direction of the scatterer 
motion. Below, it will be shown that the effect of inho­
mogeneity m otion on the scattered field is not only 
determined by the Doppler effect: it is of both a kine­
matic and dynamic nature.

The purpose of this study is generalization of the 
Rayleigh law to the case of moving elements of a 
microinhomogeneous medium and, in particular, to 
the case of a uniform m otion of microinhomogene­
ities, e.g., carried by a flow or falling under gravity. The 
results are illustrated by estimates of sound attenua­
tion due to the scattering by falling drops of rain or fog.

The distribution of rain drops in size and velocity 
has been studied over more than 150 years. In [8], it 
was noted that small drops of water freely falling in air 
acquire a spherical shape under the effect of capillary 
forces. As the drop diameter varies from 0.1 to 4— 
5 mm, the velocity of the falling drops increases with 
the drop size from 0.З to 10 m /s. For drops whose 
diameter is smaller than 0.1 mm, the velocity rapidly 
decreases; specifically, when the drop diameter is
0.01 m m  (10 pm), the velocity decreases down to З x 
10-5 m /s. For drops with a diameter greater than 4— 
5 mm, the concept of the spherical shape fails. Under 
the effect of the gradually increasing pressure differ­
ence, a drop is deformed: it flattens primarily in the 
region of the critical point and sometimes even 
acquires a recess. When the drop diameter reaches a 
value of about 6.5 mm, the drop decays. The behavior 
of the drop velocity V (m/s) depending on the drop 
diameter d (mm) is determined by the laws governing 
the variation of hydrodynamic drag forces with varying 
Reynolds num ber Re [8]. Initially, for d increasing up 
to 0.1 mm, the Stokes law V = 31d2 is obeyed. In the 
transition region, for d from 0.1 to 1 mm, V ~ 4d. 
Finally, in the region where regular drag forces take
place, for d from 1 to 4—5 mm, V =  4.6 J d .

Thus, on the whole, the initial data for fog or small 
rain are as follows: the velocity of drops is up to 0.З m /s 
while the diameter o f drops is up to 0.1 mm. For com ­
m on rain, the velocity of drops is within 4—10 m /s, 
and the drop diameter is within 1—5 mm. The water 
content in air in the case of fog or rain is denoted by w 
and expressed in grams of water per cubic m eter or per 
kilogram of dry air (g/m 3 or g/kg, respectively). The 
actual values of water content are within several units 
to several tens of units [З]. Evidently, for water drops in 
air, т =  1.2 x 10-6w. In nature, the drops of fog or rain 
are distributed in size within the limits indicated 
above. As a rule, the distributions used to estimate the 
attenuation are of an empirical character [2, З].

The flow around the moving inhomogeneities (e.g., 
falling water drops) is close to the potential one in the 
major part of the surrounding space [9—1З]. There­
fore, the effect of such a flow on scattering is of pri­
mary interest. Let us study this phenom enon by con­
sidering the flow formed near a spherical inhomoge­
neity that moves with a constant velocity V in an ideal 
liquid. U nlike the approach used in [6], we describe 
the sound propagation near the inhomogeneity by the 
Lighthill equation, as in [9—1З]. For a m onochro­
matic wave with a frequency ю, this equation has the 
form

Ap + k p 2 i _д_ (  и  d2p
юдха V edxadxp

(1)

where k =  ю/c  and p  is the acoustic pressure.
To complete the formulation of the problem, i.e., 

to write the control equation with all the appropriate
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additional conditions, it is necessary to determine the 
relation between the acoustic pressurep  and the scalar 
potential ф determining the velocity of liquid particles 
in the sound wave: V =  Уф. Using the Euler equation 
of m otion with allowance for the liquid flow, in the lin­
ear approximation in M, we obtain that the desired 
relation in the moving coordinate system г' =  г — Vt is 
as follows:

of the solution V f  and its consequences. In the linear 
approximation in M, the solution to Eq. (3) can be 
represented in the form

V f  =
ikV 0 r ,3
2 nc

Jd3r1G(г, Г!)(ПоУ)(noUe'**0"1)

+ -П- Гd3r G (г, г !) ( U y ) V  
2nc  J

(0) 
sp ■

(5)

p (г', t) = iю р <|ф ( г', t) +  -  [ Ua -  Va] (2)
l  -  dXaJ

In view of relation (2) between the variables ф and p , a 
mathematical problem can be formulated for the 
potential ф, as well as for the acoustic pressure p. How­
ever, we apply another approach, which was used in 
[11, 12].

Let us formulate the solution to Eq. (1) as in [9, 
10], namely, for the calibration potential V. This 
potential is related to the scalar velocity’s potential in 
the sound wave, V =  Уф, by the formula V (r) =  
ф(г)exp(—ik M ). Here, the renormalized wave num ­
ber к is expressed through the Doppler frequency ю = 
ю0(1 — M n0), where n0 is the unit vector in the propa­
gation direction of the incident plane’s m onochro­
matic wave and M  =  V/c is the hydrodynamic’s M ach 
number. For the field component V f, which describes 
the sound scattering by the inhomogeneities of the 
velocity U(r) characterizing the accompanying flow of 
the medium, the equation represented in the moving 
coordinate system г' =  г — Vt has the form [10—12]

2
A' V f  + к V f  = 2ik

c
Ua ̂  + П0аП0вdU  V (0)' 
■ dxa dxe

■ (3)

Here, V  =  V ;- + V sp + V f  is the total wave’s field satis­

fying the Lighthill equation, V (0) is the incident 
plane’s monochromatic wave in the zero-order 
approximation in the hydrodynamic’s M ach number, 
and Vsp is the calibration potential corresponding to 
the wave reflected from the moving surface of the body 
and satisfying the homogeneous Helmholtz equation. 
In the case of a potential flow of an ideal liquid around 
a sphere, the velocity distribution и(г) in the medium 
is described by the formula

U (г') = [ 3 (Vn) n -  V ],
2r'

3
(4)

where a is the radius of the sphere and n =  г'/ r ' is the 
unit vector directed from the sphere’s center г0(0 =  Vt 
to the observation point г =  г' + Vt. For simplicity, in 
what follows, the primes indicating the spatial coordi­
nates in the moving coordinate system will be omitted.

Unlike [10, 11], the sound scattering by a potential 
flow will be considered below for the general case, 
where the dimensionless param eter ka takes an arbi­
trary value. In addition, we will consider the meaning

Here, V 0 =  p 0/pc  is the amplitude of the incident field

and V ^  is the field scattered by the surface of the 
sphere at rest (the reflected wave in the zero-order 
approximation in M). The integrals in Eq. (5) over the 
region outside the sphere can be calculated by taking 
the function G(^ гх) to be the Green function of free 
space: G(R) =  Rrlexp(ikR).

It is known that, when low-frequency sound is 
scattered by a stationary sphere whose radius is small 
compared to the wavelength of sound, the fraction of 
scattered waves is very small and the scattering ampli­
tude is proportional to k2a3 [1, 7, and 10]. Then, from 
the comparison of two terms in Eq. (5), it follows that 
the second term  of the solution can be ignored, as it 
was done in [10, 11]. However, to obtain the solution 
for the general case, i.e., to determine V under the 
condition that the param eter ka is arbitrary, the second 
term  in Eq. (5) should be taken into account [12].

N ote that, although the solution to Eq. (3) in the 
Born approximation is represented in analytical form 
(5), it is ambiguous. In [9, 10], it was shown that, for 
moving bodies, the separation of the total scattered 
field V s into two components, one of which, Vsp, is 
related to sound scattering by the body and the other, 
Vsf, to sound scattering by the flow, is only conditional 
and has no actual physical meaning. Such a separation 
is convenient for computations and for analyzing the 
physical features of the general solution. The condi­
tionality of separating the scattered field into individ­
ual components follows from the fact that the unique­
ness of the solutions to the respective equations for V sp 
and V sf requires setting individual additional condi­
tions at the boundary r =  a. However, at the surface of 
the body, only one boundary condition for the total 
field is set, which, for a perfectly rigid inhomogeneity, 
has the form [10]

= - ik n M V ( a ) ■ (6)

Since the total field V  is formed as the sum  V ;- + 
V sp + V f, in which two terms represent independent 
unknowns, the separation of Eq. (5) into two individ­
ual conditions for the fields V sp and Vsf can be done in 
many different ways. In connection with this, in [9, 
10], it was proposed that a specific solution to Eq. (3) 
can be found by using its partial solution, which, being 
represented in the form of Eq. (5), is expressed
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through the Green function for free space. Then, con­
dition (6) serves for an unambiguous determination of 
the unknown scattered field ¥ sp under the assumption 
that the forms of the functions ¥ ;- and ¥ f  are known. 
The additional problem of finding the field ¥ sp scat­
tered by the surface of the moving sphere and satisfy­
ing the Helmholtz equation is actually reduced to the 
comm on problem of sound scattering by a body. How­
ever, together with the initial incident plane wave ¥ ;-, 
an additional field ¥  f  is now scattered by the body. By 
choosing another Green function in Eq. (5), it is pos­
sible to find another partial solution to Eq. (3). This 
results in a change in the specific form of the boundary 
condition for determination of the scattered wave ¥ sp, 
and, hence, the specific form of the solution ¥ sp will 
change. Still, the newly determined solution ¥  =  ¥ ;- + 
¥ sp + ¥  f  should in total satisfy both the initial equa­
tion for the total field ¥  and the boundary condition 
given by Eq. (6). Therefore, by virtue of the unique­
ness of the solution to the problem, the expressions 
that were obtained for the total field in different ways 
should coincide.

Thus, the field component (5) determined with the 
use of the Green function for free space represents a 
certain fictitious imaginary field, which would occur 
in the liquid in the presence of the flow (4) without the 
body. Since the second term  in Eq. (5) describes the 
scattering by the flow for the wave reflected from the 
body while the wave in question always allows expan­
sion in plane waves, let us first consider the scattering 
by the inhomogeneities of the flow velocity for a 
plane’s monochromatic wave. This situation is 
described by the first term  of Eq. (5). As was shown in 
[9—11], the corresponding fictitious field can approx­
imate the actual field ¥ f  scattered by the flow inho­
mogeneities in a num ber o f cases (e.g., when ka <  1). 
From  the expression ¥ f  = ¥ 0Ff exp(ikr)/r, which is 
valid for r —► да, we determine the scattering ampli­
tude Ff(n, n0) for the plane wave ¥ ;- scattered by the 
inhomogeneities of the flow (4) surrounding the mov­
ing sphere. The scattering amplitude has the form [10]

= ikn00/100 d  e 
2 nc J

iknr,

dx1
d iknr,
d [ UpCr,)e 1 (7)

a

where integration is performed over the entire region 
r, > a occupied by the flow.

From  Eq. (4) for the potential flow’s velocity U(r) 
and a rough estimate of integral (7), it follows that the 
region adjacent to the sphere surface makes a consid­
erable contribution to integral (7). Therefore, exten­
sion of the region of integration in Eq. (7) to the entire 
space, including the region 0 < r' < a (as it is done in 
some of the publications) may lead to an error. Let us 
perform a more accurate integration in Eq. (7) and 
determine the scattering amplitude Ff for arbitrary val­

ues of the param eter ka. For this purpose, we first take 
the integral by parts by representing it in the form

k2(nn0)
2nc

J  d q (U n0)e Vl
rj > a

-  2k  Г (dS1 n0)(Un0)eiqr1. 
2 n c j

r̂  = a

(8)

Here, the volume integral with the total divergence of 
the integrand is transformed to the surface integral 
according to the Gauss theorem. In  this case, the inte­
gral taken over the surface Sx lying infinitely far from 
the body vanishes, because the velocity of the liquid 
U(r) decreases with distance from the sphere center as 
r-3 according to Eq. (4) while the area of the surface Sx 
increases as r2. The wave vector q, which has the m ean­
ing of the “m om entum ” transferred to the medium, is 
q =  k(n0 — n), and its magnitude is 2ksin(0/2), where 
0 is the scattering angle determined from the equality 
cos 0 =  nn0. Substituting the potential flow’s velocity 
(4) in Eq. (8), we obtain a specific expression for the 
desired scattering amplitude Ff. Calculation of the 
integrals obtained in this way is rather complicated, 
and it is described in [12].

Using the results of calculating the volume and sur­
face integrals, from Eq. (8) we obtain

F( n , n0) = kka  j [ ( M n0) -  3( M n ) i j q a

(9)

+ 3 [ (M n0) ( 1  + nn0) + ( M n ) ( 3 -  5 nn0) / ]  ]
(qa) J

where ji(qr) and j 2(qr) are first- and second-order 
Bessel’s spherical functions. The expression obtained 
for Ff is valid for any value o f ka. Using general expres­
sion (9), it is possible to determine the partial scatter­
ing amplitude that characterizes the low-frequency 
sound scattering by the liquid flow formed near an 
inhomogeneity with a small radius. Assuming that 
ka <  1, we expand the Bessel’s spherical functions 
involved in Eq. (9) in powers of this small parameter. 
Then, we obtain the following formula for the scatter­
ing amplitude Ff(n, n0) in the case of ka <  1:

2 3 I
Ff  = t - ? -  { ( M n0) L4 + - ("Л ,)_

-  (M n) 1 +  2 (n n 0)

(10 )

This formula coincides with the corresponding 
expression given for Ff in [10]. In [12], a rigorous cal-
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culation of the scattering amplitude Fp was performed 
for scattering by a moving inhomogeneity. In the limit 
ka <  1, the expression obtained in [12] for an arbitrary 
value of ka takes the following form accurate to the 
terms on the order of M2:

under the condition that ka <  1, the scattering’s cross 
section a (o) has the form [1, 12]

(0) 4 , 4 6a  = - nk0 a 1 -  P L ) 2 +  зГ  P --P .
pc2j Г 2p  +

(13 )

( k V ) l
F  = 5 '5 + 1 (M no)

+ 1 [5(nno) -  (nno)(Mno) -  3(M n)] (11)

+ : (M n )(n n o) -  -( M n o)

Combining expressions (Ю) and (11), we obtain the 
total scattering amplitude for sound scattering by a 
moving body:

F = ,2  3k a -  +  1  n (n o -  M ) •

From  Eqs. (Ю) and (11), it follows that the correction 
to the scattering amplitude in the potential flow 
formed around a moving scatterer is proportional to 
k2a3M. The correction is anisotropic, because the 
expansion in spherical harmonics contains monopole, 
dipole, and quadrupole components. Taking the 
squared magnitude of amplitude (Ю) and integrating 
it with respect to angles, we determine the partial scat­
tering’s cross section ay for sound scattering by poten­
tial flow (4). Calculations show [1o, 12] that this quan­
tity is expressed as

a f = — n  k 4a 6M 2[ 1 +  — cos2 0o 
1 25 Г 27 “

ka <  1, (12)

where 0o is the angle between the vector no and the 
velocity V of the body (cos 0o =  noV/V).

From  Eqs. (Ю) and (12), it follows that the partial 
scattering’s cross sections characterizing the sound 
scattering by inhomogeneities of the potential flow 
near moving microinhomogeneities are proportional 
to the square of the hydrodynamic’s M ach number. 
However, as it was m entioned above, sound is scattered 
not only by the flow of the medium that is caused by 
the motion of the body, but also by the moving surface 
of the sphere itself. When sound is scattered by fixed 
microinhomogeneities with a small radius (ka <  1), 
the scattering amplitude is proportional to k2a3 and 
practically isotropic, so that the scattering’s cross sec­
tion is proportional to k4a6 in compliance with the 
Rayleigh law [1, 7]. For an inhomogeneity with an 
arbitrary density and an arbitrary compressibility,

where c and c are the velocities of sound in the liquid 
and in the sphere, respectively; p and p are their den­
sities; and ko =  ®o/c  is the wave number. The m otion 
of the sphere with a velocity V <  c gives rise to correc­
tions to the amplitude F 0) and the scattering’s cross 
section a (o) due to the sound scattering by both the 
flow and the moving surface of the body. As shown 
above, the partial scattering’s amplitude associated 
with the flow Fy is proportional to k2a3M  irrespective of 
the sphere radius. As for the diffraction corrections
Fp J) associated with the sound scattering by the mov­
ing surface o f the body, they have the structure of 
Eq. (11) similar to that of expression (Ю) for the scat­
tering amplitude associated with the flow. For a small- 
radius sphere, this result was obtained in [Ш—12].

Thus, calculation of the full scattering’s cross sec­
tion for sound scattering by a moving inhomogeneity 
with allowance for both the wave diffraction by its 
moving surface and the wave scattering by inhomoge­
neities of the accompanying flow of the surrounding 
liquid leads to the appearance of additional terms in 
expressions of the type of Eqs. (1o) and (11). In addi­
tion to the term  a (o), which is zero-order in the M ach 
number and is described by Eq. (13), and the terms 
that are quadratic in M  and arise due to the linear cor­
rections to the amplitude F  in the expression for the 
cross section a , cross terms arise being proportional to 
the M ach number. Thus, the total scattering’s cross 
section for sound scattering by a small-radius particle 
moving with the velocity V <  c and surrounded by 
potential flow (4) is [1o, 12]

a  = 7n k Ja 6( 1 -  6M no)• (14)

This formula expresses the modified Rayleigh law for 
incompressible inhomogeneities uniformly moving in 
a potential flow. For a sphere with arbitrary density and 
compressibility, the modified Rayleigh law in the case 
of ka <  1 takes the form a  =  a (o)(1 — 6M no), where a (o) 
is given by Eq. (13).

U nder the assumption that the flow around the 
drops is the potential, the application of the modified 
Rayleigh law to drops of rain that have a diameter of 
5 m m  and fall uniformly with a velocity of 1o m /s at a 
water content in air of 5% (t  =  o.o5), yields the atten­
uation у = 9.3(ka)4(1 — o.2cos 0o) per m eter or у = 
9.3 • 1o3(ka)4(1 — o.2cos0o) per kilometer. For exam­
ple, in the frequency band 1oo—1ooo Hz (which deter­
mines the speech intelligibility), the attenuation of 
sound propagating through rain in the horizontal
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direction (cos 00 =  0) is very small, as could be pre­
dicted earlier, and, according to the classical Rayleigh 
law, is only 5 x 10-6 to 5 x 10-2 dB/km. However, in the 
case of sound propagation at other angles to the flow, 
the attenuation due to sound scattering by rain varies. 
For example, in the direction opposite to the drop 
motion, i.e., upwards (cos 0O =  —1), the attenuation 
increases by 20%, whereas, in the downward direction 
(cos 0O =  1), the attenuation decreases by 20%. A fur­
ther increase in the velocity of microinhomogeneities 
could basically lead to an increase in anisotropy, but, 
at such velocities, the flow around microinhomogene­
ities, such as drops, cannot be purely potential [8]. 
Still, it should be noted that, in a microinhomoge­
neous medium, at relatively small velocities of m icro­
inhomogeneities on the order of 50—60 m /s (M  = 
0.16), the scattering is doubled in the case of upstream 
sound propagation in air and virtually absent in the 
case of downstream sound propagation.

Let us consider the frequency dependence of sound 
scattered by the inhomogeneities of the accompanying 
flow of liquid. It is similar to the frequency depen­
dence of sound scattered by the moving body itself, 
because it is determined by the same time factor mul­
tiplying the scattering amplitudes Fp and Ff. If, in the 
factors exp(ik|r — Vt| — mt), we expand the quantity 
|r — Vt | in the small param eter V(t — t0) / |r  — r01, we find 
that the time dependence is determined by the ordi­
nary exponential time factor: exp(i®/). The frequency 
of the scattered field depends on both the angle ofwave 
incidence and the angle of wave observation and has 
the form

= ю0(1 -  M n0 + M n ). (15)

Formula (15) is derived under the assumption that, in 
the moving coordinate system, the Doppler frequency 
is ю =  ю0(1 — M n0). From  Eq. (15) it follows that, at a 
stationary spatial point r, the frequency of scattered 
sound юл varies as a function of the observation angle 
and may coincide with the incident wave’s frequency 
ю0 in two cases. First, this may occur when sound is 
scattered at a zero angle, i.e., when n =  n0. Second, the 
frequencies may coincide when sound is scattered at 
an arbitrary angle under the condition that the velocity 
vector V is perpendicular to the difference between the 
unit vectors n and n0. In particular, if the scattering 
region is observed in the transmission geometry, the 
frequency shift юл — ю0 will be absent at the instant the 
body crosses the transmitter—receiver path irrespec­
tive of the angle of crossing.

To make estimates for the case of sound scattering 
by inhomogeneities of a viscous liquid flow caused by 
a small-size inhomogeneity [11], we assume, as above, 
that the velocity of the moving inhomogeneity V is 
constant and small compared to the sound velocity in 
the medium c. Then, the hydrodynamic M ach num ­
ber M  =  V/c satisfies the inequality M  ̂  1. In addition,

if the radius of the microinhomogeneity is sufficiently 
small, the corresponding Reynolds number Re =  aV/v 
is also small, and the flow around the inhomogeneity 
will obey the Stokes law while the velocity distribu­
tion U(r) in the liquid will be described by the for­
mula U =  curl(gV) [7, 11, and 14], where the function 
g(r') in the coordinate system r' =  r + Vt satisfies 
both the equation

2
grad A' g = 0, Г > a (16)

and the boundary conditions that follow from the 
requirement that the velocity at the sphere surface,
i.e., at Г =  a, be zero and that U — ► —V at Г —► да. 
The solution to Eq. (16) that is valid in the external 
region Г > a and decreases at infinity can be found in 
the form g =  ar + b/r. Using the boundary conditions 
to determine the unknown coefficients a and b, we 
obtain the velocity distribution U(r') in the liquid:

U (r') = - V  -  a - 3 (V n )n -V  + 3 a (Vn)n + V, (17)

where n =  (r — Vt)/|r — Vt | is the unit vector directed at 
the observation point r. Remember that, in the moving 
coordinate system, the velocity U(r) is expressed as 
U(r') + V.

As is known, Eq. (1) is correct to linear terms in the 
hydrodynamic’s M ach number, but it initially ignores 
the viscosity and the variation in entropy of the liquid 
due to dissipation processes related to heat conduction 
and viscosity of the medium. The inclusion o f dissipa­
tion in the zero-order approximation in the hydrody­
nam ic’s M ach num ber leads to attenuation of propa­
gating waves. For example, for a plane’s m onochro­
matic wave of the form p0exp(ikr — mt), the inclusion 
of the rejected terms in Eq. (1) leads to a change in the 
wave num ber к =  ю/c, i.e., to the appearance of its 
imaginary part [15, 16]

Im к = —  f 4v + ^  + X(y -  1) ,

where v and Z/p are the viscosity coefficients, X is the 
thermal diffusivity, and у =  cp/c v is the specific heat 
ratio. The inclusion of these rejected terms actually 
leads to renormalization of the wave num ber к in 
Eq. (1), which is assumed to be accomplished in the 
subsequent calculations. An equation that is more 
general than Eq. (1) is the Blokhintsev—Howkins 
(sometimes called Ffowes—Wilhams—Howkms) equa­
tion [15, 16]. It also contains the cross terms that are 
linear in the M ach num ber M  and proportional to the 
first power of dissipation coefficients. If these coeffi­
cients and the M ach num ber are small, the aforemen­
tioned additional terms remain small compared to the 
terms that are already present in Eq. (1) and, hence, 
can be ignored in the first approximation. Thus, the 
sound propagation in a viscous medium with allow­
ance for the accompanying flow near a moving body
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can  also be described b y E q . ( 1)  b y taking  in to  account 
that, in  th is case, v o rtic ity  o f the flow  is nonzero w h ile  
the ve lo city  d istrib u tio n  near the body is  described by, 
e .g., fo rm u la (17 ). N o te  that, in  th is case, the ve lo city  
can  fo rm a lly  be represented as the sum  o f two term s 
U (r ), in  w h ich  U x is  described by the second term  o f 
E q . (17 )  and U2 b y the th ird  term  o f E q . ( 17 ) . T h e  first 
term  o f E q . ( 17 ) , i.e ., —V, is  related to the sh ift o f the 
co ord inate system  and is  un im p o rtant fo r the scatter­
in g  problem .

Now , it  should  be noted that the expression fo r the 
ve lo city  com ponent U j is s im ila r in  structure to E q . (4) 
and  d iffe rs fro m  it  o n ly  in  the c o e ffic ie n t, w h ic h  is 
(—1 /2 )  tim es sm alle r than that o f the p o te n tia l flow ’s 
velocity. The re fo re, representing the total sound scat­
te rin g ’s am p litud e F Msc by the sum  o f two term s, 
F Msc =  Fx +  F2, each o f w h ich  is determ ined b y the 
respective com ponent Uk , we im m e d iate ly  obtain  the 
expression for the am p litud e com ponent Fl deter­
m ined  by the flow  U j. U sin g  the result o f [10 ], w here 
the scattering am p litud e was found fo r sound scatter­
in g  b y inhom ogeneities o f p o te ntial flow  (4 ), and tak­
in g  in to  account the aforem entioned facto r (—1 /2 ) , we 
ob tain  that the am p litud e com ponent Fl m akes one 
h a lf  o f E q . ( 1 1 ) . T h e  scattering am p litud e com ponent 
F2 is  ca lcu late d  on the basis o f E q . (7 ), in  w h ich  the 
ve lo city  U (r ) is  taken in  the fo rm  U2 =  3a [(Vn)n +  
V] /4 r. U n lik e  U j,  th is ve lo city  com ponent decreases 
slow er w ith  d istance from  the body (as 1 /r ) , w h ich  
leads to an  increase in  the value o f the in te g ral and 
determ ines the vortex ch aracter o f the visco us flow. 
Indeed, d irect ca lcu la tio n  shows that c u rl U j =  0 and 
the total v o rtic ity  o f the flow  Q =  c u rlU is determ ined 
b y the ve lo city  com ponent U2 and is  expressed b y the 
fo rm ula Q =  3a[V x n] /2 r 2. A fte r in te g ratio n , we 
ob tain  that, w hen ka <  1 , the scattering am p litu d e ’s 
com ponent F2 o f sound scattered b y the flow  U2 is 
ap p ro xim ately given b y the expression

F2 = 3 a ( M n0 + M n ) . (18 )

F ro m  the co m p ariso n o f Eq s. ( 1 1 )  and (18 ), it  fo l­
low s that the com ponent F2 o f the sound scattering’s 
am p litud e associated w ith  the scattering b y the vo r­
tex’s flow  com ponent is greater than F1 b y a facto r o f 
(k a )2 and does not depend on frequency. H e n ce , as the 
frequency decreases, the ratio  o f these am plitudes rap ­
id ly  increases. S in ce  the total scattering am p litud e Ff =  
Fl +  F 2 is in  th is case determ ined b y the com ponent F 2 
w h ile  F1 m akes o n ly  h a lf  the scattering am p litud e 
associated w ith  the scattering o f sound b y inho m o ge­
ne ities o f the p o te n tia l flow, we can  co n clu d e that, in  
the case o f ka <  1 , the in c lu s io n  o f the v isco sity  o f the 
liq u id  leads to a co nsiderab le increase in  the sound 
scattering’s am p litude.

How ever, from  accurate ca lcu la tio n  o f the p re v i­
o usly rejected part o f in te g ral (5 ), i.e ., the part related 
to the ve lo city  U (r) rather than its derivative (8), it  fo l­
low s that, in  fact, th is part is  not sm a ll and should  also 
be taken in to  account. D ire c t c a lcu la tio n  o f in teg ral 
(5) w ith  allow ance for the second term  in  its integrand 
fo rm a lly  leads to divergence o f the in te g ral. T h is  is a 
consequence o f the slow  decrease in  ve lo city  (17 )  w ith  
d istance. It  should  be rem em bered that the Stokes- 
type ve lo city  d istrib u tio n  in  a visco us liq u id  (E q . (17 ))  
ho ld s o n ly  in  the reg io n  adjacent to the body, w hereas, 
away from  the body, the ve lo city  decreases faster than 
1 / r  [7, 8, and 14 ]. H e n ce , the region o f in te g ratio n  in  
E q . (5) can  be p h y s ic a lly  lim ite d  to a d istance on the 
order o f a /R e , w ith in  w h ich  d istrib u tio n  (17 )  is va lid . 
A s a result, the scattering am p litud e Ff proves to be 
fin ite . T h e  estim ate o f in te g ral (5 ), as the p re v io u sly  
ca lcu lated  value o f expression (18 ) fo r the am p litude 
Ff ~ F 2, proves to be m u ch  greater than the scattering 
am p litud e o f sound scattered b y inhom ogeneities o f 
the p o tential flow. T h e  co rresponding p artia l scatter­
in g ’s cross sectio n  co n sid erab ly exceeds the value o f 
E q . (12 )  and, for ka <  1 , is expressed as

<5f =  3 (n a2) M 2[ 3cos2 0 0 +  1 ].
4

To ca lcu late  the fu ll scattering’s cross sectio n , it  is  n e c­
essary to co n sid er three cases depending on the re la ­
tive values o f M  and (k a )2.

T akin g  in to  account that F1 =  Ffpot/2 ,  w here Ffpot is 
given b y E q . (10 ) and the sum  F pot =  Fp +  F fpot is given 
b y E q . ( 1 1 ) , we denote F2 =  Ffvisc and obtain the total 
scattering’s am p litud e in  the fo rm  F visc =  Fp +  Ff =

Fpot +  F 2 — F x/2 . T h e  squared m agnitude |^ „ С|2 used 
for ca lcu la tin g  the scattering cross sectio n  is

IF  I2 ~  F2 +  2 F F + F2 (19 )I-4 vise _  x pot ^  pot̂  fvisc ^  х fvisc * \ ±y/

T h is  expression neglects the quantities |Fjpot|2 ,

2 1 F fpot| |Ffvisd , and 2| Fpot I f t l  , w h ich  are p ro p o rtio n al 
to the product o f the cro ss-se ctio n a l area o f the in h o ­
m ogeneity b y M 2(k a )4, M 2(k a )2, and M (k a )4, in  co m ­
p ariso n  w ith  the term s p ro p o rtio n al to (k a )4, M (k a )2, 
and M 2, respectively.

I f  M  >  (k a )2, we have F 2 =  F Msc >  F t and, ca lcu la tin g  

the scattering cross sectio n  a visc =  JVd |F visc|2 , it  is p o s-

2
sib le  to ignore not o n ly  the term  p ro p o rtio n al to F1 , 

but also the first term  o f E q . (19 ), w h ich  is  p ro p o r­
tio n a l to (k a )4; thus, we retain  o n ly  the second and last 
term s o f E q . (19 ), w h ich  are p ro p o rtio n al to M (k a )2 
and M 2. T h e  scattering cross sectio n  takes the fo rm

ACOUSTICAL PHYSICS Vol. 55 No. 6 2009



ON THE LOW-FREQUENCY SOUND SCATTERING 705

tfvisc [ M  > (  ka)2 ]

= 2(na2)j 2 [3(M n0)2 + M2] -  (ka)2(M n0)
(20)

If M < (ka)2, we have F2 =  FMsc < Fx. In this case, it is 
possible to retain only the first term  of Eq. (19), which 
is proportional to (ka)4. The scattering obeys the m od­
ified Rayleigh law for the case of a potential flow 
around the body, and the expression for the scattering 
cross section coincides with Eq. (14):

tfvisc [ M  <(  k a )2 ] = 9 (n a2) (ka)  4( 1 -  6 M n0).

Finally, if M ~ (ka)2, we have F2 =  FMsc ~ Fh Then, 
in Eq. (19), only the terms proportional to M(ka)4 can 
be ignored while the three terms that are proportional 
to (ka)4, M (ka)2, and M2 are retained. In the first term, 
it is possible to ignore the addition proportional to M  
in parentheses o f Eq. (14). The expression for the scat­
tering cross section takes the form

°visc[M ~ (ka )2] =  (n a ) | 7(ka) 4

(21)

+ 4 [3(M n0)2 +  M 2] -  1 (k a )2(M n0) ! .

Applying the scattering law refined with allowance 
for the viscous nature of the flow around inhomogene­
ities, for water drops with a diameter of 0.1 m m  that 
are falling uniformly with a velocity of 0.31 m /s in air 
with a water content o f 5% (t  =  0.05), the attenuation 
Y for M  > (ka)2 takes the following form according to

Eq. (20): y = 3.37 • 10-3 3 9 2- + 9 cos 00 -  
.4 4 0

(k a )2
2Mt

cos 00

per meter or y = 3.37 3 9 2
3 +  9 cos 00 -4 4 0

( k g )
2M

cos00 per

kilometer. These estimates are obtained under the 
assumption that all the drops are identical; i.e., the 
distribution of drops in size is ignored [3]. In the fre­
quency band 100-1000 Hz, the attenuation of sound 
propagating in such a medium is relatively strong even 
for horizontal propagation (cos 00 =  0): it exceeds the 
values predicted by the classical Rayleigh law by sev­
eral orders of magnitude. In addition, the attenuation 
is almost frequency independent and, for the chosen 
conditions, makes about 2.24 dB/km. The contribu­
tion of the viscous flow to scattering in the horizontal 
direction proves to be determining. For sound propa­
gating in the directions different from horizontal, 
attenuation somewhat increases and begins slightly 
depending on both the frequency and direction of 
wave propagation. Thus, along with the similarities, 
some distinctions from the case of a potential flow are

observed. The sound attenuation for upward propaga­
tion, against the motion of drops (cos 00 =  -1 ) ,  is sev­
eral times greater than that for downward propagation, 
in the direction o f drop m otion (cos 00 =  1), as in the 
case of the potential flow. However, for sound propa­
gating downwards (cos 00 > 0), the attenuation at low 
frequencies exceeds that at high frequencies. C on­
versely, for sound propagating upwards (cos 00 < 0), the 
attenuation at high frequencies is greater than that at 
low frequencies. On the whole, the frequency depen­
dence of attenuation is rather weak.

If the diameter of drops decreases by half, the 
velocity of their m otion decreases fourfold. The scat­
tering cross section of a drop decreases by a factor of 
16 (if M  > (ka)2), while the attenuation, according to 
Eq. (20), decreases by a factor of 8. For example, for 
drops with a diameter of 0.05 mm, the attenuation still 
considerably exceeds the classical one determined by 
the Rayleigh law. It makes 0.28 dB/km, but now only 
for sound frequencies below 50 Hz; for drops with a 
diameter of 0.01 mm, this occurs for sound frequen­
cies below 0.1 Hz. Thus, as the size of drops decreases, 
the relation M  > (ka)2 for sound is violated. Generally 
speaking, fog usually means air with water drops 
whose size is within 0.01 m m  [2]. Therefore, drops 
with a size of 0.01 to 0.1 m m  should be classified with 
drizzle rather than fog. Hence, the specific viscous 
scattering law given by Eq. (20) is only valid for low- 
frequency sound and water drops whose size lies 
within 0.1 to 0.01 mm. On further decrease in the drop 
size or on further increase in frequency, the value of 
the M ach number approaches (ka)2 and, at M ~ (ka)2, 
Eq. (21) begins to be valid. For M  < (ka)2, the scatter­
ing obeys the modified Rayleigh law (14). Evidently, 
for fog droplets with a diameter smaller than 0.01 mm, 
the fall of the droplets can be ignored. For drops of rain 
with a diameter greater than 0.1 mm, the scattering is 
mainly determined by the modified Rayleigh law (14) 
with allowance for a certain refinement concerning 
the role of the lam inar wake, which is specified below.

Such considerations are also applicable to estimat­
ing the effect of a decrease in the volume fraction t  of 
water in air (the water content) on the predicted atten­
uation value. Evidently, the attenuation value should 
be proportional to the water content. To estimate the 
actual values of t  from below, we note that, in the case 
of precipitation, the water content w (t  =  1.2 x 10-6w) 
exceeds (sometimes, by a factor of several tens) the 
values of the water content corresponding to satura­
tion conditions. The latter depend on temperature and 
make 4 to 30 g/kg (grams of water per kilogram of dry 
air) in the temperature range from 0 to 30° C. With 
allowance for the mean value of w, which under satu­
ration conditions is about 10 g/kg (T ~ 20°C), the vis­
cous attenuation due to the scattering of waves for all 
the frequencies below 1000 Hz should be about 5.6 x 
10-4 dB/km  for rain drops with a diameter of 0.1 mm. 
This value is at least five orders of magnitude greater
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than the classical attenuation predicted by the Ray­
leigh law for a frequency of 1000 Hz under the same 
conditions and also considerably exceeds the attenua­
tion calculated with allowance for the viscous and heat 
conduction losses [3, 4]. As the sound frequency 
decreases, the mechanism of the growth of the scatter­
ing’s cross section due to the contribution of the vis­
cous flow near the microinhomogeneity persists, 
which, along with the expected decrease in viscous 
absorption [1, 3], emphasizes the significance of the 
effect considered above. The theoretical values of 
attenuation of sound intensity in air at normal condi­
tions are determined by the expression 5 =  3.1 x 10-9/ 2 
(in decibels per kilometer). However, the values of 
sound attenuation observed experimentally in air in 
the frequency band from 100 to 1000 Hz far exceed the 
theoretical values and make 0.5 x 10-3 to 0.15 dB/km. 
In [2], the authors present experimental data on sound 
attenuation in fog, which were obtained by measuring 
the sound attenuation in a reverberation chamber with 
drops whose mean size was 0.0065 mm. In [3, 4], one 
can find theoretical estimates of sound attenuation 
due to viscosity and heat conduction in a medium with 
drops (the viscosity manifests itself as the entrainment 
of suspended aerosol particles by the sound wave). 
M ost of the estimates belong to the frequency range 
above 500 Hz, but, in the low-frequency part of this 
range (500—1000 Hz), the predicted attenuation val­
ues are m uch smaller than our estimates. Still, the 
attenuation due to the sound scattering in a medium 
with drops (at a drop diameter of 0.1 m m  and a volume 
fraction of water т =  5 x 10-2) that was predicted with 
allowance for experimental data is not high. In partic­
ular, being an estimate from above, it requires no cor­
rection of the parameters of technical sound genera­
tion means (e.g., warning horns operating in fog or 
rain within distances of about 1—2 km). However, for 
sound waves with frequencies of100, 10, or 1 Hz, such 
an attenuation value seems to be anomalous or at least 
unexpected. This statement holds even if one takes 
into account both the decrease in attenuation with a 
certain decrease in the size of drops and the actual 
value of water content for precipitation under consid­
eration.

It should be noted that, for drops of rain with diam ­
eters of 1—5 m m  and with velocities o f downward 
m otion on the order of several meters per second, such 
estimates of attenuation values are hardly valid. The 
actual influence of the viscous flow on the sound scat­
tering by rain drops of this size cannot be estimated by 
the Stokes law, because the drag coefficient for falling 
rain drops, which determines the flow of the surround­
ing liquid, proves to be many times lower [8]. The 
above estimates of the effect of viscosity on the scatter­
ing are restricted by the limiting diameter of water 
drops, up to 0.1 m m  (0.01—0.1 mm), and the limiting 
velocity of the viscous m otion of drops, up to 0.3 m /s 
(Re ~ 2). On further increase in the velocity of m otion 
or in the size of the microinhomogeneity, with an

increase in the Reynolds number, the flow around the 
inhomogeneity acquires the character of a laminar 
wake [8, 13].

Thus, one can see that, in the general case, the 
motion of an inhomogeneity with respect to the direc­
tion of wave propagation modifies the Rayleigh law in 
the whole range of angles of their intersection. In [13], 
it was shown that the lam inar wake accompanying the 
actual m otion of microinhomogeneities (drops of 
rain), being extended in the longitudinal direction, 
can additionally affect the scattering’s cross section. 
This requires a further refinement of the modified 
Rayleigh law (14) for sound scattering by rain. How­
ever, in solving this problem, the calculation of the 
integrals in Eq. (8) for ka <  1 proves to be compli­
cated, and such calculations require special consider­
ation in another paper.

In closing, it should be noted that the scattering 
property of microinhomogeneities that was calculated 
above is somewhat overestimated, since it ignores the 
irreversible loss of mechanical energy in inhomogene­
ity oscillations, which is observed together with sec­
ondary sound radiation. This loss leads to a decrease in 
amplitude and, hence, to a decrease in scattering [1— 
5, 15, and 16].

On the other hand, the presence of viscosity affects 
the structure of the flow near the moving inhomogene­
ity. In particular, a potential flow develops vorticity 
and, in addition, the decay o f the flow parameters with 
distance becomes slower. This leads to an increase in 
the scattering’s cross section according to the law lin­
ear in the M ach number. Evidently, the second effect 
is noticeably greater than the first one, especially for 
ordinary, i.e., nonresonant inhomogeneities, such as 
falling drops of water.

Thus, the corrections to the scattering’s cross sec­
tion are calculated for the case of a potential flow 
around a moving inhomogeneity. These corrections, 
being proportional to the hydrodynamic’s M ach num ­
ber, modify the Rayleigh law of low-frequency sound 
attenuation in a microinhomogeneous medium 
(Eq. (14)). It is shown that, when microinhomogene­
ities are moving in a viscous medium, the structure of 
the frequency dependence of scattering (Eq. (20)) 
together with the parameters of spatial attenuation of 
low-frequency sound at M  > (ka)2 may considerably 
deviate from  those described by the Rayleigh law. 
In particular, in a viscous m icroinhom ogeneous 
medium, low-frequency sound attenuation is almost 
frequency independent. A viscous flow of the medium 
near inhomogeneities not only intensifies the sound 
absorption owing to additional loss, but also consider­
ably enhances the scattered field. This refines the clas­
sical laws determining the effect of viscosity on the 
scattering’s cross section in a microinhomogeneous 
medium, which are used for stationary inhomogene­
ities. On the basis of the data on the velocity and size 
distributions of falling drops of water in air, refine­

ACOUSTICAL PHYSICS Vol. 55 No. 6 2009



ON THE LOW-FREQUENCY SOUND SCATTERING 707

m ents are proposed fo r the law s o f lo w -fre q u e n cy 
sound attenuation due to the scattering o f sound waves 
b y ra in .
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