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Abstract—An exact solution is obtained to the problem of axisymmetric normal modes and natural frequen
cies characterizing surface perturbations of a drop that sits with an arbitrary wetting angle on a substrate and 
experiences only gravity and surface tension. The resulting mode solutions are used to calculate and analyze 
different shapes of the perturbed surface for the same drop placed on a vibrating base. The distinctive feature 
of the present study is the explicit representation of the results in the form of calculated shapes of the surface 
of a vibrating drop, comparison of the parameters of actual drops with resonance frequencies, and compari
son with experimental data.
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Such simple (and even ordinary) objects as a drop 
of a liquid and its antipode, i.e., a gas bubble (a gas- 
filled cavity) in a liquid, had been studied for years, 
and they still attract the attention of researchers work
ing in different fields of m odern science and technol
ogy. Moreover, recently, it was found that these simple 
objects can be used as microreactors for conducting 
im portant physical technological operations (see 
below). These findings, in their turn, stimulated fur
ther research into the nature of drops and bubbles.

The theory of the dynamic behavior of bubbles and 
drops that describes their shape variations due to nat
ural oscillations appeared at the boundary of the 19 th 
and 20th centuries. The development of the theory 
began with the first publications [1—3], which now 
have become classical. Later, the initial models were 
improved, primarily, by taking into account explicit 
physical effects, such as viscosity, compressibility of a 
fluid medium, thermal and diffusion processes, etc. 
The basic stages and results of these studies can be 
found in [4—6] and in references therein.

Apart from detailed investigations of natural sur
face oscillations in bubbles and drops, considerable 
interest has been attracted to the behavior of these 
objects under the action of external driving forces. In 
the studies of the latter effects, external actions were 
primarily represented by acoustic waves. The models 
and results concerned with acoustic actions on gas- 
vapor cavities in a liquid have formed a special area of 
research: acoustic cavitation [7, 8]. It is important to 
note that, approximately 20 years ago, the fully devel
oped theory of acoustic cavitation laid the foundation 
for another new area of research: studies of the inter
action of acoustic waves with bubbles enclosed in arti

ficial shells; these studies are im portant for the devel
opment o f m odern technologies in medical acoustics 
(see, e.g., [9]).

Unlike acoustic cavitation, the effect o f acoustic 
waves on drops has been rather poorly investigated. 
Scarce papers devoted to this subject [10—13] were 
mainly related to the development of principles of 
acoustic levitation and its use for remote m anipula
tions with liquid drops and for their diagnostics.

An important step forward in the theoretical and 
experimental investigations of the dynamic behavior 
of bubbles and drops was related to finding the possi
bilities for practical application of the dynamically 
varying inner volumes of these objects, in which, 
owing to the unusual conditions and regimes, some 
specific physicochemical effects and reactions can be 
run. Acoustic actions can effectively control the 
dynamics and, primarily, the volume variations of the 
aforementioned micro-objects and, hence, their 
internal processes. Consequently, microbubbles and 
microdrops can operate as microreactors that perform 
the necessary physicochemical processes under an 
acoustic control. For microbubbles, the development 
of the m icroreactor concept began with the internal 
luminescence effect, which was first described in [14]; 
the modern interpretation can be found in [15]. The 
latest idea concerned with this phenom enon is the 
“acoustic fusion (sonofusion) effect” inside a collaps
ing bubble [16].

Implementation of the m icroreactor concept for a 
drop requires considering the system formed by a drop 
on a solid substrate, which makes it necessary to take 
into account the wetting effect [17]. The “technologi
cal process” of such a m icroreactor consists in that, in

722

mailto:yuri_makov@mail.ru


ANALYSIS OF SHAPE PERTURBATIONS OF A DROP 723

(a) (b)

Fig. 1. A drop on a substrate: (a) the wetting angle notice
ably exceeds 90° (weak wetting, a lyophobic surface of the 
substrate with respect to the drop liquid); (b) the wetting 
angle is noticeably smaller than 90° (strong wetting, a lyo- 
philic surface of the substrate).

® x

Fig. 2. Geometry of the problem.

the course of evaporation (drying) of a drop, which is 
a disperse system with a filler in the form of some kind 
of micro- or nanoparticles, the latter undergo self
organization (self-assembly). As a result, a certain 
micro- or nanostructure is formed on the substrate, 
such a structure being suitable for various applications 
[18—21]. The aforementioned process depends on 
natural factors: the size and composition of the drop, 
the relative properties determining the wetting of the 
substrate material with the drop liquid, etc. However, 
it can also be actively controlled by acoustic methods. 
In particular, in [23], a m icrodrop on a substrate and 
the processes in it were studied under the action o f a 
surface acoustic wave (SAW) propagating in the sub
strate. It is also possible to consider a vibrational 
action on the processes in a m icrodrop: the m echa
nism  of this action should be basically different from 
the effect of SAW because of the m uch lower fre
quency range (from tens of hertz to one or two kilo
hertz). Indeed, by acting on the entire drop through 
the tem poral variation of the “effective gravity force” 
in com bination with the surface tension, vibration 
excites certain modes of spatial oscillations of the 
drop as a whole. This manifests itself in a specific 
shape o f the perturbed surface o f the drop (see 
below).

In the present paper, we calculate the perturbed 
shape of a drop of an ideal incompressible liquid on a 
vertically vibrating substrate, which determines the 
vibration effect on the self-assembly of micro- and 
nanostructures in the disperse system represented by 
the drop on the substrate. A necessary step in solving 
this problem is the initial calculation of the eigen- 
modes and natural frequencies of a drop on an im m o
bile substrate with allowance for holonomic con
straints at the boundary between the liquid drop and 
the solid surface. The fundamental distinctive feature 
of the problem solved in this paper is the arbitrary wet
ting angle (see Fig. 1) corresponding to different liq
uids and solutions placed on the substrate. In the few 
publications concerned with the theoretical analysis of 
such systems [23, 24], calculations were performed for 
hemispherical drops on the substrate, i.e., for a wetting 
angle of 90°. In this particular case, calculation and

analysis of modes are considerably simplified, some of 
the modes being degenerate. However, the results of 
such calculations give no idea of the behavior of a 
vibrating drop in the cases of strong and weak wetting 
(Fig. 1). In our paper, we also demonstrate possible 
deformations of the surface of a vibrating drop on a 
substrate (such data are absent in the cited publica
tions).

The geometry of the problem is shown in Fig. 2. 
The drop in the form of a sphere segment with a char
acteristic opening angle (wetting angle) 0O and an ini
tial sphere radius R  sits on a horizontal substrate so 
that the circular contour of its contact with the sub
strate remains invariable in the course of vibrations. 
Taking into account the surface tension a  at the gas— 
liquid interface and the gravity force, we consider per
turbations of the drop surface in the spherical coordi
nate system, these perturbations being axially sym
metric about the vertical axis (i.e., in the azimuth 
angle y ) . First, we determine the norm al modes of 
natural oscillations of the drop in the form  o f a sphere 
segment attached to the substrate. Then, on the basis 
of the calculated norm al mode system, we analyze 
the vibration-caused forced variations of the drop 
surface. At each o f these two steps, the boundary 
conditions in the region o f contact between the drop 
and the substrate are considered as imposed holo- 
nomic constraints (boundary conditions) and, with 
the use o f the D ’Alembert—Lagrange principle, the 
generalized constraint forces are eliminated. After 
this, a change to norm al generalized coordinates is 
performed. In addition, the following effective 
approach to the problem  is applied: we consider 
oscillations of the whole spherical drop with holo- 
nomic constraints in the chosen cut plane, which 
represents the actual substrate. As a result, we sim ul
taneously obtain the solution for two cases (two parts 
of the drop), one of which is for the sphere segment 
with an angle 0O and the other is for the sphere seg
m ent with the angle n — 0O.

We assume that the m otion of the liquid drop that 
affects the shape of its surface is potential, which 
allows us to use the velocity potential ф in our subse-
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quent equations. T h e  varyin g  surface o f the sp h e rica l 
( in  the absence o f perturbations) drop is described as

r(0 , t) =  R + 2,(0, t) ,

w here 2(0 , t) is  a sm a ll d eviatio n  o f the drop surface 
from  the in it ia l sp h e rica l surface.

S in ce  the drop is  in co m p ressib le , the p o te n tia l sat
isfies the tw o -d im e n sio n al L ap lace  equation, w hose 
so lu tio n  is determ ined b y the series o f n th -o rd e r Le g 
endre fun ctio ns Pn m u ltip lie d  b y the desired am p litude 
fun ctio ns and in te g ral positive powers o f the rad iu s, 
w h ich  excludes sin g u la rity  at the center o f the drop:

and to the d im ensio nless p h ysica l param eters

Ф(Х, 0, т) =  —- Ф (r , 0, t) =  
R

N
X  A n (т) X P n  ( cos 0 ),
n = 2

~A n(t) = ------^ A (т =  t/ —0) ,—0 R n -  2

^ R ^  =  X f n (т) X  1 Pn( cos 0) ,
n=2

(5)

d f
d  т

nAn( т ) ,

N
Ф (r, 0, t) = X  An(t)rnPn( co s0 ). (1)

n=2

It  should  be noted that sum m ation in  E q . ( 1)  begins 
from  the th ird  term , sin ce  the ze ro -o rd e r p a rtia l m ode 
corresponds to iso tro p ic extension (com pression) o f 
the drop and is  not allow ed because o f in co m p re ssib il
ity. T h e  first p a rtia l m ode corresponds to tra n slatio n al 
d isp lacem ent o f the drop and is  not considered in  our 
problem . T h e  bo und ary co n d itio n  at the drop surface 
n o rm a lize d  b y the unperturbed sp h e rica l surface and 
corresponding to the pressure ju m p  due to surface ten
sio n  and g ravity is  determ ined by equation [25]

р Д -iP -  — (2  +  A n ) ^  +  p g ^ c o s 0 =  0, (2)
Wf dt2 r 2V a> dr  f  dr  W

1 d (  d \w here A Q = ------------- sin  0 —  is  the an g ular part o f the
sin  0 5 0 ^  502

L ap lace  operator in  the sp h e rica l co ordinate system  
w ith  allow ance fo r sym m etry in  the a x ia l angle у .

w here A „ ^ ) and f  (т) are the desired d im ensio nless 
fun ctio ns o f tim e.

Substituting E q . (5) in to  bo und ary co n d itio n  (2 ), 
we arrive at a system  o f d im ensio nless equations 
describ ing the am plitudes o f the p a rtia l m ode o f a free 
sp h e rica l drop in  the constant g rav ity  fie ld :

An + ®„A„ +  K_ '(n _±_1I
. 2  n +  3

A n + 1 + n (n ~  A
2 n -  1

n- 1 =  0,

2
и„ =  n (n + 2 ) (n -  1 ) , n = 2, 3, N.

Sub stitu tio n  o f E q . (5) in to  bo und ary co n d itio n  (3) 
leads to a system  o f d im ensio nless equations d escrib 
in g  the h o lo n o m ic co nstraints at the liq u id —so lid  
bo und ary in sid e  the c irc le  w hose perim eter co in cid e s 
w ith  the contact lin e :

N
fk = X A nW P n k =  0, к = 1, 2, P -  1 ,

n=2
(6)

O n  a so lid  substrate at z  =  0, the no -le akag e  c o n d i
tio n  should  be satisfied:

vn | z = 0 =  0, (3)

w here n is  the n o rm al u n it ’s vector to the substrate and 
d irected tow ard the upper h a lf-p la n e ; the substrate 
plane is determ ined in  sp h e rica l coordinates b y the 
equation r  cos 0 =  R  cos 00. F o r ca lcu la tio n , the n o 
leakage co n d itio n s are assigned on the d iscrete c irc le s 
M k (see F ig . 2). Now , it  is necessary to sp e cify  the co n 
d itio n  at the contact circu m fe ren ce, w h ich  should  be 
im m o b ile . T h is  co n d itio n  has the fo rm

grad ф| r = r>0 = 00 =  ° .  (4)

x [n co s0kPn( cos0k) +  s in 0 k P ( cos0k)].

F o r the co ntact lin e , using  E q . (4 ), we obtain

N - 1

X  n P 1  ( cos 0 0 )Pn ( cos 0 0 )
n=2

-  N P n( cos 00  P  ( cos 0 0 )]  =  0.

(7)

C o m b in in g  bo und ary co n d itio n s (6) and (7 ), we arrive 
at a sing le  system  o f equations fo r the im posed co n 
straints:

N
fk = X  An(т)р„к =  0, к = 1 , 2 , . ,  P ,

n=2

In  the above expressions, it  is co nvenient to change 
to the d im ensio nless variab les

n- 1

= t /  —0, —0 =  J R f , X  = r /R X [n co s0kPn( cos0k) +  s in 0 k P ( cos0k)] ,т
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к = 1 , 2, P -  1 , n = 2, 3, N ,
i (8)

Pnk =  nPN ( cos 00  ) Pn ( cos 00 )

-  NPn( cos 00) P ln ( cos 00), 

к = P, n = 2, 3, N  -  1 ,

Pnk =  0, к = P, n = N.

W e note that, in  Eq s. (6 )—(8) and in  the subsequent 
ca lcu la tio n s, the upper in fin ite  lim it  o f sum m ation is 
replaced b y a fin ite  value w h ile  co ntin uo us bound ary 
co n d itio n  (3) im posed on the entire contact area is 
represented in  the discrete form . T h is  is necessary fo r 
subsequent n u m e rica l ca lcu latio n s.

W e represent the so lu tio n  Ф (Х , 0, т) describ ing 
arb itrary  o scilla tio n s (in c lu d in g  the forced ones) o f the 
drop on the substrate as a sup erp o sitio n o f n o rm al 
m odes Фт(Х, 0, т):

Natural frequencies for two complementary drops of water 
on a solid substrate with opening angles 00 = 60° and 120° 
and with three characteristic radii

Number 
of normal 

mode

R=1 mm R=5 mm R=10 mm Dimension
less natural 
frequenciesNatural frequencies, Hz

3 260 23 8 6.0954
4 413 37 13 9.6621
5 476 43 15 11.1511
6 571 51 18 13.3598
7 719 64 23 16.8276
8 950 85 30 22.2372
9 1008 90 32 23.6130

10 1290 115 41 30.1978

these factors, the system  o f equations can  be repre
sented in  m a trix  form :

Ф ( Х ,0 ,т )  =  £ Ф т (X, 0, т ) ,
m

N
ф т (X, 0, т) =  £  A m(т )X Pn( cos 0 ).

n = 2

I f  we represent A m (т) in  the fo rm

a ;  (т )
m -iWm т

(9)

(10)

the d im ensio nless constants a'm and Wm involved in  
E q . (10 ) w ill describe the relative am p litud e o f the n th 
p a rtia l m ode in clu d e d  in  the m th  n o rm a l m ode and 
the m th  n a tu ral frequency, respectively.

To obtain a system  o f d iffe re n tia l equations

describ ing the desired fun ctio ns A m (т) appearing in  
E q . (9), we ap p ly  the D ’A le m b ert—Lagrange p rin c ip le  
and e lim in ate  the substrate’s re actio n  forces w ith  the 
help  o f co n strain t equations (8): 2

2n A n

+  K  (-n ^ ( 1 -  SnN)An + 1 +  n (n — P (  1 -  Sn2)A; Г
2 n +  3 2n -  1

I p

= £  MkPnk,
к = 1 

N
£  An OOPnk = 0

 ̂n = 2

Г  =  cX  . ( 1 1 )

H e re, X m =  [am ; am; am] is the co lu m n  vector o f
the u n k nown am plitudes o f p a rtia l h arm o n ics for the 
m th n o rm a l m ode and C is  the k n own constant m atrix . 
T h e  hom ogeneous system  o f equations ( 1 1 )  w ill be 
solved w hen, for the m a trix  C , we determ ine the eigen

values X b X2, ..., XN -1  and the eigenvectors [a”m ; a”m ; ...;

a”m ] fo r each o f the Xm. T h e  eigenvalues are found from  
the ch aracte ristic equation d et(C  — XE) =  0, w here E  
is a ( N  — 1) x (N  — 1) u n it m atrix . T h e  set o f the eigen
vectors X m o f m a trix  C satisfies the equation CXm =  
XmX m. T h e  eigenvalues are related to the n a tu ral fre

q uency b y the fo rm ula Wm =  J - X m .

F ig u re  3  shows the ca lcu lated  shapes o f n o rm al 
m odes and the corresponding n a tu ra l frequencies 
(table) fo r two drops w ith  d ifferent w etting angles: 00 =  
6 0 ° and 00 =  1 2 0 °. T h e  n o rm a l m odes are num bered 
acco rd ing  to the sam e p rin c ip le  as that used in  [26]: 
the num ber m o f the n o rm a l m ode is id e n tica l to the 
num ber o f nodes w ith in  h a lf  o f the deform ed d rop ’s 
p ro file . It  should  be noted that, in  the case o f drop 
o scilla tio n s at a resonance frequency, the shape o f the 
d rop ’s surface g rad u ally  acquires the shape o f the co r
responding n o rm a l m ode irrespective o f the in it ia l 
co n d itio n s.

Now , we proceed to co n sid erin g  the d ynam ics o f a 
drop on a substrate perfo rm ing h a rm o n ic o scilla tio n s. 
Le t the fo llo w ing law  govern the d im ensio nless d is
p lacem ent o f the substrate:

w here pk (k  =  1, 2 , ..., P ) fo rm  the set o f the desired ^ (т ) =  — e~i(WT + n/2)
independent Lagrange factors. A fte r e lim in a tio n  o f R
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0 1.5 0 1.5 0 1.5 0 1.5
3 ^ — Л ^ - 0 0  з о ^ - — r ^ - 0 0  30 ^ — r ^ \ 3 0  3 0 ^ -- \ 3 0

j . 1 . 0 / \ 1 1 . 0 / 4  / \
6 0 / \ б 0 /  f p j rQxv‘v"> . \ 6 0 / / 60/  А т \6 0

Fig. 3. Shapes of normal modes for a water drop with a radius of 1 mm on a substrate (the upper row refers to a drop with an open
ing angle of 60°, and the lower row to a drop with an opening angle of 120°). The solid and dotted lines show antiphased oscilla
tions for the (a) 3rd, (b) 4th, (c) 5th, and (d) 6th modes. The natural frequencies are given in the table.

w here W  is  the d im ensio nless c y c lic  frequency o f sub
strate o scilla tio n s. To describe the deform ation o f the 
drop surface, we change to the n o n in e rtia l fram e o f 
reference rig id ly  connected w ith  the substrate. In  th is 
case, the external force density fie ld  invo lved in  the 
equation o f m o tio n  o f the liq u id  in  the drop can be 
represented as f =  g — a , w here g is  the free fa ll’s a c ce l
eratio n vector and a is  the substrate’s acceleratio n  ve c
tor varyin g  w ith  tim e. T h u s, the change to the n o n in 
e rtia l fram e o f reference is  equivalent to the in tro d u c
tio n  o f a tim e-d ep end ent g rav itatio n al fie ld , w hose 
acceleratio n  is  d irected along the OZ  axis (see F ig . 2 ), 
in  the equation o f m o tion:

£ ▼  +  (v V )v  =  -  ^  +  g -  , ( 12 )
dt Pf dt

d im ensio nless equations describ ing the p a rtia l m ode’s 
am plitudes o f a free sp h erical drop in  a variab le g ra v i
tatio n al fie ld :

A  n + ю nA n + K( 1 +  a ) (n +  1 ) 2 A
_ 2 n + 3

n + 1 + n(n - Q  A
2 n -  1

n - 1

+  к д -
дт

n + 1
.2 n + f  + 1 +  2 n - - f  - 1

+ f  - =  0,

2
юn = n (n + 2 ) (n -  1 ) , n = 2, 3 ,  , N.

A p p ly in g  the D ’A le m b ert—Lagrange p rin c ip le  to 
the coupled system  in  a variab le  g rav itatio n al fie ld , we 
obtain:

A n + ю nA n + K (1  +  a )

w here ez is  the u n it vector along the OZ  axis.

T h e  in c lu s io n  o f the variab le  g rav itatio n al fie ld  
leads to m o d ifica tio n  o f b o und ary co n d itio n  (2 ), 
w h ich , in  term s o f the d im ensio nless variab le s, takes 
the form

(n + 1)-( 1 -  8 nN) An + , +  P (  1 -  8 n 2) A n - Г

+  K ^
дт

2 n + 3 2 n -  1

n +  1 n
2 n +  1 ( 1 -  8nN)fn + 1 +

2 n -  1
( 1 -  8 n 2 ))fn - 1

X

д2Ф

д т2
+  K ( 1  +  a ) ̂  +  * !* £' 

. dX  дт R.
cos 0 -  (2  +  Д n ) —  

v ш  dX

= -
дт

(13 )

( cos 0 -  cos 0 0 )
X = 1

w here a is  the substrate’s acceleratio n  n o rm alized  b yg . 
N ote that, in  the general case, boundary co n d itio n  (13 ) 
on the free d rop ’s surface is  o f the in te g ro -d iffe re n tia l 
type because the liq u id  p a rtic le ’s d isplacem ents and 
the ve lo city  p o te ntial are related b y an in teg ral depen
dence. In  the p a rticu la r case o f h a rm o n ic va ria tio n  o f 
these quantities w ith  tim e , the aforem entioned depen
dence degenerates in to  an algebraic one. Sub stitu tio n  
o f series (5) in  b o und ary co n d itio n  (13 ) acco rd ing to 
the schem e described above leads to a system  o f

p

' = ^  PkPnk, (14 )
k = 1

n = 2, 3, _ ,  N,
N

X  в nkAn(т )  =  0 , k = 1, 2, _ ,  P ,
n = 2

f  = nAn ( т ) .
^d  т

To solve system  (14 ), we ap p lied  the R un g e—K u tta  
m ethod accurate to fo u rth -o rd e r term s w ith  the use o f 
the fo llo w ing in it ia l co n d itio n s: at zero tim e t =  0, the 
z th ve lo city  com ponent o f liq u id  p article s at the sub
strate surface co in cid e s w ith  the substrate ve lo city
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0 1.5 0 1.5 0 1.5 0 1.5

Fig. 4. Shapes of drops (the parameters are identical to those in Fig. 3) on a substrate vibrating with a frequency of 1900 Hz and 
a displacement amplitude of 10 pm for different instants of time: t = (a, a’) 0.0149, (b, b’) 0.0168, (c, c’) 0.0302, and (d, d’) 0.0343 s. 
The period of the vibrating substrate is 0.526 ms.

while the liquid particles outside this thin layer are 
assumed to be immobile. The law governing the 
m otion of the substrate is chosen so that, at t =  0, its 
displacements and, hence, the displacements of the 
liquid particles are zero. Figure 4 shows the profiles 
of the deformed drop’s surface for different instants 
of time.

From the results of numerical simulation, it follows 
that deformation of the drop surface may be consider
able. Presumably, this is related to the potential flows 
arising inside the drop under the effect of the external 
force’s acceleration f = g — a . One can expect that 
their evolution is determined by not only the magni
tude of the external force Fext = m f (m is the mass of the 
drop), but also the inertia of the liquid layers. The lat
ter property can be characterized by the time At* that is 
required for a liquid volume’s element to “respond” to 
a variation in the velocity vsurf of the moving substrate. 
Since Fext acts in the vertical direction, we condition
ally divide the drop into layers in the direction of the 
OZ  axis, i.e., according to their distance from the sup
porting plane (see Fig. 2). In view of condition (3), the 
layer adjacent to the solid-liquid interface does not 
move along the OZ  axis with respect to the substrate; 
therefore, the characteristic time Ati for this layer is 
much smaller than that for the layers separated from 
the substrate by certain distances. If the characteristic 
time 1/F  of the variation of the external force is com 
parable with At ( and, at the same time, a reaches con
siderable values (according to the results of numerical 
simulation, considerable values of a are those greater 
than 10), it is possible to initiate a regime with a con
siderable deformation of the drop surface and an 
effective excitation of low-order modes. At such 
parameters of external action, for drops with an angu
lar size 00 < n/2, the system may pass to a nonlinear 
regime accompanied by the detachment of micro - 
drops from the surface [26]. Based on the results of

numerical simulation, we assume that the drop’s 
atomization regime can be initiated if the frequency of 
substrate oscillations is sufficiently low, so that the 
drops have enough time to “respond” to changes in 
the substrate velocity. On the other hand, the fre
quency should be sufficiently high for the plane to 
reach sufficiently high acceleration a in the course of 
its motion. It is important to note that, in the case of 
choosing the optimal frequency, the deformation of 
the drop’s surface considerably depends on the sub
strate’s displacement amplitude Z0.

At high frequencies of substrate oscillations, when 
1/F  < At i (according to numerical simulation, for a 
system with the chosen parameters, this condition is 
satisfied by frequencies of several kilohertz and 
higher), one should presumably expect a softer 
regime, at which the perturbation is localized near the 
drop surface. Possibly, persistence of such a regime will 
favor an increase in the rate of drop evaporation with
out spraying (atomization). Indeed, it is under these 
conditions that the energy of substrate m otion can 
theoretically be localized in the kinetic energy of the 
m otion of a liquid particle in a thin layer of the drop, 
which should facilitate separation of molecules from 
the liquid surface. Generation of such a regime may be 
useful for practical implementation of technological 
processes that require fast evaporation of drops from a 
solid surface in the absence of a pronounced convec
tion of the liquid inside the drops.

Returning to the idea of controlling the self-assem
bly and self-organization of nanostructures in m icro
drops by vibration action, we note that such an action 
on the nanostructure’s self-organization process is of a 
multifactor character. First, vibration directly affects 
the dynamics of nanoparticles in the drop. Second, it 
affects (controls) the m icrodrop’s evaporation pro
cess. Third, the perturbed structure of the drops sur
face will “manifest” itself in the pattern that remains
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on the substrate after evaporation. All of these factors 
are initially determined by the spatial modes excited in 
the drop by vibration, i.e., by the modes studied in the 
present paper.
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