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Abstract—The error in determining the position of the spectral maximum of a signal against Gaussian white
noise is considered. The sensitivity of the monitoring method based on measuring the frequency shifts of the
field maximum is estimated. For a specific case of a Gaussian signal’s spectrum and the medium perturbed

by background internal waves, results of calculations are presented.
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INTRODUCTION

The interference fields of oceanic waveguides con-
tain points at which the field intensity reaches local
maxima due to the constructive interference of modes
[1]. The presence of such points sensitive to perturba-
tions of propagation conditions is a characteristic fea-
ture of wave fields in waveguide systems. Determina-
tion of the main laws that govern the space—frequency
or time—frequency distributions of local maxima and
investigation of their dynamics caused by changes in
the propagation conditions represent an interesting
problem, which offers qualitatively new possibilities
for a wide range of applications. One such promising
area of investigations of the fine space-frequency’s
interference pattern includes the studies of the inter-
ference invariant [2—5], which describes the fre-
quency shifts of local field maxima as functions of the
horizontal source-receiver’s distance. New diagnostic
possibilities are also offered by the method based on
measuring the variations that occur in the frequency
shifts of local interference maxima because of oceanic
inhomogeneities [6, 7]. The method is founded on the
mode dispersion, which leads to frequency shifts of
the interference pattern due to the variability of the
medium. The fruitfulness of this approach for solv-
ing the inverse problem (the approach was called
sweep-monitoring) has been confirmed by the data
of full-scale experiments [8] and computer simula-
tions [9—13].

Considerable attention has been given to systems
using the concept of phase conjugation [14] for com-
pensating the effect of the inhomogeneities of the
medium, as well as the effect of the field localization
(or focusing) in multimode systems. In this case, the
focusing is controlled by varying the reference fre-
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quency of transmission without changing the inverted
field’s distribution formed at the aperture in the
absence of perturbation. The efficiency of the field’s
focusing control is discussed in [15—18], the possibili-
ties of sweep-monitoring with the use focusing are
analyzed in [10, 11, and 13], and the application of
focusing for the reverberation signal’s control is stud-
ied in [19-21].

Thus, determination of the varying frequency posi-
tions oflocal field maxima is an important problem for
many areas of investigation in ocean acoustics. The
problem of the minimal frequency shift of the interfer-
ence pattern that allows resolution of neighboring
local maxima is considered in deterministic form in
[22]. At the same time, the inevitable presence of noise
imposes basic limitations on the accuracy of the field
maximum’s indication and, hence, on the accuracy of
measuring the frequency shifts of the field maxima.
Therefore, investigation of the stability of the field
maximum’s frequency shifts with respect to the noise
level is a topical problem. Unlike the classical problem
of estimating the position of a pulse on the time axis
[23], the present paper estimates the frequency posi-
tion of the spectral maximum of a signal on the back-
ground of noise, which, evidently, requires special
consideration.

The present paper discusses the error in determin-
ing the position of the spectral maximum and the fre-
quency shift of this maximum because of the perturba-
tion of the medium. This allows estimating the mini-
mal fluctuation level of the oceanic inhomogeneity’s
parameters, which can be determined from the data on
the frequency shifts of the local field’s maxima. The
results of this study are illustrated by an example of a
Gaussian signal’s spectrum in application to the
model of perturbation by background internal waves.
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STATEMENT OF THE PROBLEM

At the input of the receiving system, the spectral
realization &() is set in the form of the sum of the sig-
nal and noise spectra:

S(®) = 5(0, 0y) +n(). 1)

Here, s(®, ©y) = s(® — ®,) is the frequency spectrum
of the signal with its maximum at the frequency ©o =
®,, where @ = 2nf’is the cyclic frequency; n(w) is the
spectral amplitude of steady-state white noise:
(n{w)n*(0")) = Nd(o — o'), where N is the spectral
density; the angular brackets denote statistical aver-
aging over an ensemble of random realizations. To
simplify the calculations, the spectrum of the signal
is assumed to be symmetric about its maximum:
s(w — ©y) = s(0, — ®). The frequency w, can be esti-
mated as in the case of determining the position of a
pulse on the time axis [23], namely, with the use of
matched processing. The difference is in that the real-
ization of the cross-correlation function is between the
chosen spectrum &(m) given by Eq. (1) and the spec-
trum of the useful signal s(®, ©,) = s(® — ©4):

Hox) = [E(0)5*(0, 00)do = g(0x) +,(0x),(2)
where

g(wy) = J.s(oo, ©y)s* (0, 04)do,

g(wx) = J.n(oa)s*(oo,oo*)doa.

Here, w, is the varied frequency corresponding to the
maximum of the spectrum s(®, ®,). The function
g.(w,) obtained at the output of the receiver is an auto-

correlation function of the input’s useful signal spec-
trum, and it can be called the signal’s spectral func-
tion. The function g,(®w) caused by noise is the cross-
correlation function between the noise spectrum and
the input spectrum of the useful signal, let us call it the
noise’s spectral function. The specific form of the
function g,(w) due to noise n{w) is different for differ-
ent realizations (1). If we use the Fourier transforms

u(t) = J-u(oo)exp(ioot)doo,
u(w) = (1/2n) |u(H)exp(—iwt)dt,

the ratio of the maximal value of the signal’s spectral
function to the rms value of the noise’s spectral func-
tion, i.e., the signal-to-noise ratio, will be

q = gsmax(o‘)O)/Gn = ’VE/ZTCN' (3)

Here, E = J-sz(t)dt =2n J-|s((o, (oo)|2d(o is the signal

energy. By analogy with correlation processing in the
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time domain, the device implementing algorithm (2)
can be called the correlation (matched) receiver in the
frequency domain.

If noise is absent, i.e., n(®w) = 0, the maximum of
the function J(w,) given by Eq. (2) corresponds to the

maximum of the spectral function: ®w, = ®,. In the
presence of noise, the maximum of J(w,) occurs at
0y, = 0, different from m,: maxJ(o,) = J(®, ). Per-

turbation of the medium causes a frequency shift Aw of
the signal spectrum’s maximum. As a result, when
noise is absent, the position of the signal spectrum’s
maximum will be at the frequency ®; = o, + Aw. In
the presence of noise, the maximum occurs at the fre-

quency @;, so that the frequency shift of the maxi-

mum is A® = ®, — ®,. The problem consists in
determining the statistical fluctuations of the fre-
quency ®, = (50 — gy and estimating the sensitivity of
the monitoring method based on measuring the fre-
quency shift A@ of the local field’s maximum.

SOLUTION OF THE PROBLEM
The most plausible estimate of ®, will be such a
value of 0, = ®, that corresponds to the maximum of
the cross-correlation function J(, ). It should satisfy
the equation 6J(w*)/6oo*|w* —a, = 0. For brevity, in
the subsequent calculations, the partial defivative is
denoted as 0s(®, ©+)/0W«|, _4 = 05(®, ®5)/0®x .

Using Eq. (2), we obtain

aJ ()

= j[s(oa, w0)+n(w)]mdw = 0.(4)
603*

603*

Under the low-noise assumption, we expand the func-
tion ds*(®, ®;)/0w+ in a Taylor series in powers of
(:)0 = (;:)0 — 0‘)0:

Os*(w, @) _ O5*(w, @) | O, @) =
h 2

603* 603* aw*
3 )
*
£ 10570, 0) (‘”; D) ()2 + ...
2 Oy

In this series, we will only retain the linear term.
Note that the derivative is 0s*(w, ®y)/0wsx # 0,
whereas ds*(w, ©,)/0w = 0. Substituting Eq. (5)
into Eq. (4) and taking into account that
J.s(oo, ©)[0s*(®, ©,)/0ws]do = 0, we obtain the

following estimate for the variance of frequency fluc-
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tuations of the spectral maximum’s position ®, in the
first approximation:

Ga, = ((®y— )"

Nﬂﬁs(w_’(’%) o (6)
— 603*
62s*(oo ®g) ’ o ’
fiton, o) T2 20, +NJ‘S(LZ(’°O) do
Oy, omy

This is a quantitative characteristic of the error in mea-
suring the frequency w, Here, the mathematical

expectation is mg; = (@y— oy = 0. If the square of
the signal-to-noise ratio (3) satisfies the condition

g*> > 1, by virtue of the Schwartz—Bunyakowsky ine-
quality, Eq. (6) takes the form

vjeee
6(})*

2
do

. (7)

2 *
fsco, A G TN
0wy

The second derivative in the integrand in Eq. (4) char-
acterizes the steepness of the spectrum at the point
® = ®,. Hence, in indicating the position of the spec-
tral maximum, matched filter (2) realizes the maximal
possible ratio of the spectrum steepness to the noise’s
spectral density. In estimating the acceptability of ine-
qualities of the a > b type, we proceed from the crite-
rion that the left-hand and right-hand parts differ by
no more than an order of magnitude, i.e., by a factor
of 10. In view of notation for the signal-to-noise ratio
(3), Eq. (7) can be represented in the form

QX

2
do J.|s(oo, wo)| dw

1
0o q_z 62 N 2 0
J'S((D, QO)LZ’@O)Q@

0wy

which is convenient to use for comparative analysis of
the estimates obtained for the variances of different
signal spectra in the case of identical signal-to-noise
ratios. Result (6) can also be obtained by the small-
parameter method based on the expansion of cross-
correlation function (2) in inverse powers of the sig-
nal-to-noise ratio. This approach was used to deter-
mine the variance of the estimated temporal position
of a pulse [24]. The present paper gives a briefer der-
ivation, which allows a simple and illustrative formu-
lation of the applicability condition for linear expan-
sion (5).

For this purpose, we substitute expansion (5) in
Eq. (4) by retaining the quadratic term and take into
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account the Gaussian’s factorization property of the
mean value of a product [25]. As a result, for estimat-

ing the variance Géo in the second-order approxima-
tion, we obtain the quadratic equation

acy, +2bos —2¢ = 0, (8)
where
3 2
Qo N j‘w o,
3
0wy
2
c=N ﬂﬁs(w_w) do,
603*

2 )

2 *
b= J.s((o, ooo)éL(D;wO)d(o

omy

2
+N j‘a—zs(‘”’ D)\ g,

2
0oy

The second-order approximation for the variance,
which is determined by the solution to Eq. (8), asymp-
totically tends to the variance estimate given by Eq. (6)
when the condition

b > 2ac (10)

is satisfied. This condition can be considered as the
criterion of applicability of the first approximation.

In the presence of high-level noise, the above
approach allows one to obtain higher-order approxi-
mations for estimating the variance of the frequency
position of the spectral maximum and, in every spe-
cific case, to determine the limits of applicability of
the chosen approximation (which is very important).
The drawback of the given method consists in that, as
the number of terms in expansion (5) increases, calcu-

lation of the variance Géo becomes rather difficult.

The approach is effective if the expansion is restricted
to the fourth-order term (the fourth derivative), since
the inclusion of higher-order approximations requires
application of numerical methods for solving the alge-
braic equations.

In the general case, higher-order approximations
presumably lead to ambiguity of the variance estimate

G(ZEO ; in other words, to ambiguity in indicating the

position of the maximum of cross-correlation func-
tion (2). Physically, this means the presence of several
peaks in this function, one of the peaks being true and
the other peaks being false. The ambiguity in deter-
mining the position of the maximum is eliminated by
increasing the signal-to-noise ratio. Therefore, in
most of the physical applications, it is sufficient to
consider the first approximation.
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Assuming that, at a small frequency shift Aw caused
by an inhomogeneity, the form of the signal spectrum
is retained (this assumption is quite permissible), we

can estimate the mean square fluctuation of Ao, ie.,
(AD)) = (A0 - Aw)?y , as

(11)
so that the variance of the frequency shift does not
depend on its value. Here, Gél is the estimate of the

fluctuation variance for the frequency ®, correspond-
ing to the spectral maximum.

The threshold sensitivity of sweep-monitoring is
understood as such a frequency shift Aw,, of the local
maximum that is identical to the rms value (standard
fluctuation) of A® , i.e., Ao, = G,; . Hence, accord-
ing to Eq. (11), in the first approximation of dispersion
estimate (6), the limiting resolution of neighboring
maxima is

(Aoy)’
N ﬂ@s(w, 00" 1o (12)
— 603*
62s*(oo W) ’ 2 ’
J.s(oo,ooo)—sodoo +qu do

0wy o i
Thus, the measured frequency shift Aw should be suf-
ficiently large to provide the excess over the threshold:
A® 2 yAwy, v = 1. The value of the coefficient y is cho-
sen to provide the most accurate measurement of the
field maximum’s frequency shifts. The oceanic inho-
mogeneity’s model being known, Eq. (12) allows one to
estimate the error in the perturbation parameters deter-
mined from the data on the frequency shifts of interfer-
ence maxima, i.e., from solving the inverse problem.

APPLICATION OF THE RESULIS
Let us consider a Gaussian spectrum

s{o, 0y) = Aexp[_( (13)

o — 030)2}
2p2 ’

for which it is possible to obtain the results in analyti-
cal form. Here, A4 is the spectrum amplitude and p =
ov/ Zﬁ , where dv is the spectrum width at a level of
1/e of the spectrum maximum. The latter quantity
characterizes the steepness of the spectrum at the point
2 2 2
© = 0y S(@y, o)/ [0 s(®y, wy)/007] = (8v) /8. By
virtue of Eq. (3), the square of the signal-to-noise ratio is
2 _ 1 T_:AZSV

N2 N
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Substituting Eq. (13) in Eq. (12), we estimate the
threshold sensitivity of the method. As a result, we

obtain
2
(o)’ = 2(2)(1+2). (14)
2¢q qz
If¢?>> 3,1ie., g 5.5, Eq. (14) takes the form
\og = O, (15)
2q

Thus, at a given signal-to-noise ratio, an increase in
the spectrum width reduces the sensitivity of the
method. According to Egs. (9) and (10), estimate (14)
of the threshold frequency’s shift is valid under the
condition that

S/ 30, ie, ¢>3.8,

whereas estimate (15) of the threshold frequency’s
shift is valid when

g*> 30, g=>4.2.

One can see that the first approximation of the thresh-
old sensitivity is justified under the condition that the
signal-to-noise ratio exceeds several units.

For illustration, let us estimate of the sensitivity of
the method by considering the propagation conditions
and the model reconstruction of the frequency spec-
trum of internal waves with the use of field focusing by
the conjugate wave’s front [10]. For modeling, we use
the focusing frequency f, = 230 Hz and the width of
the focal spot 0v/2n ~ 16.5 Hz. Assuming that the sig-
nal-to-noise ratio is ¢ = 5 (14.0 dB), for the threshold
frequency’s shift given by Eq. (14), we obtain A/, =
2.4 Hz. The frequency shift Af caused by the dis-
placements of liquid layers Al(z,) at the depth z, is

A = « U fy, 20)AL(z,). For the depth z, = 60 m, the
coefficient is ¥ ~ 0.053 m/Hz. The sound velocity’s
increments Ac(z,) are related to the frequency shift Af

by the formula Ac(zy) = —«(fy, 2p)[dc(z)/dz]AS,

where ¢ (z) is the unperturbed sound’s velocity profile
[22]. Hence, the threshold’s oscillation amplitude is
A&, = 0.13 m and the threshold’s sound velocity is
Acy, = 0.027 m/s. Evidently, an increase in the signal-
to-noise ratio raises the sensitivity of the method.

ie.,

CONCLUSIONS

For Gaussian white noise, the fluctuation variance
of the frequency corresponding to the spectral maxi-
mum of a signal is estimated in the first approxima-
tion. The condition under which this approximation
should be sufficient is discussed. The approach allow-
ing calculation of the variance with the use of higher
approximations is demonstrated. The threshold sensi-
tivity of the monitoring method based on the data on
frequency shifts of the local field’s maximum is esti-
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mated. The results of the study are illustrated by con-
sidering the perturbation of the medium by back-
ground internal waves as an example.
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