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A b s t ra c t— The dispersion and excitation characteristics of the guided waves in a rod surrounded by an infinite 
solid medium (cladding) are investigated. First, the bisection technique is employed to find all the roots of 
the dispersion function on the basis of theoretical analysis and to obtain the complex phase and group velocity 
dispersion curves of the guided modes. Second, according to their different dispersion characteristics, the 
guided modes are divided into two categories: normal modes and Stoneley modes. And it is concluded that 
the normal modes merely exist in the “hard cladding” model in which the cladding’s shear velocity is larger 
than the rod’s; while the Stoneley modes in cylindrical interface are highly dispersive and merely exist in the 
model whose acoustical parameters satisfied the existence condition of the Stoneley waves. Third, the seldom 
discussed issue, the excitation mechanisms of the guided waves, excited by three source models: symmetric 
point source, axial and radial force sources, are simulated respectively. Attention is paid on the dominant 
mode which has better excitation sensitivity and the suitable excitation frequency range. Moreover, the prop
agation characteristics of the Stoneley modes, ignored in previous references, are analyzed and compared 
with those of the normal modes.
D O I :  10.1134/S1063771010040020

1. INTRODUCTIONIt is an interesting research topic that guided waves propagated in a rod surrounded by an infinite solid medium. One important application of this topic is ultrasonic non-destructive testing for the rockbolts. In engineering constructions, numerous rockbolts, which are long steel rods, are inserted into the groundwork to prevent the slippage of the rock and to ensure the stability of the groundwork. There are thousands upon thousands rockbolts at the important building sites. An essential problem is how to use the elastic waves propagated in the steel rockbolt [1—4] to estimate the bonding state between the rockbolt and the surrounding rock. It gives us a good research topic.There have been some researches on this topic. Gazis [5] investigated free harmonic waves propagated in the hollow circular cylinders both in analytical and numerical results. Pao [6, 7] developed a technique to determine the phase and group velocity dispersion curves in elastic solids and researched the dispersive flexural waves in circular cylinder. Thurston [8] studied the elastic waves' propagation in a solid rod surrounded by another solid medium. The study is mainly for the case that the medium outside the rod has finite thickness which is aimed for modeling the ultrasonic
1 The article is published in the original.

delay line memories. Rose et al. [9—11] studied the non-axisymmetric guided waves in a hollow cylinder by using the normal mode expansion method. Lowe etal. [12—15] performed systematical study about the guided waves, with circumferential orders equal to 0 and 1, in a multi-layered cylindrical elastic solid medium. Bixing Zhang et al. [16], Kawald et al. [17], and Kley et al. [18] theoretically and experimentally studied and developed the dispersion properties of the guided waves in cylindrical multi-layered media.However, these studies were all focused on the dispersion characteristics of the guided waves without considering the excitation characteristics of the guided waves. Although it tells us the phase and group velocities of the guided waves can be determined by the dispersion equation, it dose not show that the modes can be certainly excited and received in practical situation. For a given source, the differences among the excitation amplitudes of guided waves are significant, and they depend on the waves' excitation characteristics. In many cases, we want to know which modes are dominant. However, this problem has no any answers in the previous researches about the wave propagation for the rockbolt testing. The one of the main aims of this paper is to use the mode’s excitation mechanisms to locate which modes have greater amplitudes, which modes haves less amplitudes, and to find out which
412
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PROPAGATION CHARACTERISTICS OF GUIDED WAVES 413modes are dominant and which modes are too small to be received. This study lays a theoretical foundation for the rockbolt testing.On the basis of theoretical analysis and numerical simulations about the guided waves propagated along a rod surrounded by an infinite-thickness elastic solid medium (cladding), not only are the dispersion characteristics studied further, but also the excitation characteristics are investigated for the first time in this paper. First, the dispersion equation and the excitation amplitude representations are given in theory. Then, the dispersion curves of all the possible axisymmetric longitudinal modes and non-axisymmetric flexural modes are numerically obtained by using the bisection technique. Finally, the excitation intensity characteristics of the guided waves excited by the symmetric point source, the axial and radial force sources are analyzed in detail.
2. THEORYA rod with radius a and infinite length surrounded by an infinite cladding solid medium are considered. Both the rod and cladding are isotropic elastic solids. In the rod, the velocities of P  waves and S  waves are Vp1 and Vs1, and the density is p1. In the cladding, the velocities of P  waves and S  waves are Vp2, Vs2, and the density is p2. As depicted in Fig. 1, it is convenient to adopt cylindrical coordinates (r, 0, z) where the z-axis is along the symmetric axis of the rod. The cladding extends to infinite both along the z-axis and the radial direction (the r-axis). The excitation source is placed in the coordinate origin to excite the elastic wave. The following theoretical analysis is conducted in the frequency-wavenumber domain (ю — kz) where ю and kz are the angular frequency and wavenumber in the 

z  axis.For the displacement vector U in solid medium, it is usually introduced by 3 displacement potentials ф, у, and x which denote the compressional (P), shear vertical (SV), and shear horizontal (SH ) waves respectively [19—21].U = Уф + V x (x e z) + V x V x (уez) . (1)It is easy to find that the displacement potentials ф, у, and x all satisfy the Helmholtz equation. For convenient in the following, the displacement potentials are denoted by the subscripts 1 and 2 for the rod and cladding respectively.In the rod, the displacement potentials ф1, у1, and Xi can be expressed as [19—21]ф 1 = [A 1 I n (a 1 r) + В 1 K n (a 1 r)] cos n (0 -  0 0 ),< У1 = [C 1 In(P1 r) + D 1 Kn(P1 r)] cosn(0 -  00 ), (2).X1 = [E 1 In(p 1r) + F1 K n(P 1r)] sinn(0 -  0 0 ),where In and K n are the n th-order modified Bessel functions of the first and second kinds, respectively;

Fig. 1. Geometry of the model, which is a rod surrounded 
by an infinite solid cladding.

n is the circumferential order of the acoustical field which is determined by the source, and 00 representsthe azimuth of the source. a1 = ^Jk2, -  k2p1, p1 = 
I 2 2"

^ k z -  ks 1 , kP 1 = ю/Va, kS1 = ro/Vs1 , kz = ю/V, V is the phase velocity along the rod axis. The compressional potential ф1 and shear vertical potential у1 are symmetrical about the plane 0 = 00, while the shear horizontal potential x1 is anti-symmetrical about the plane 0 = 0O. For the axisymmetric source (n = 0), the potentials are not related to the angle 0 and the shear horizontal potential x1 does not exist.The second terms in Eq. (2) is infinite at r  = 0 and denote the out-going waves from the origin to infinite, which is the direct field generated by the source. Then B1, D1, and F 1 are known coefficients for a given source. The first terms in Eq. (1) is finite at r  = 0 and denote incoming wave from infinite to origin, which is generated by the interface between the rod and cladding and usually named as the reflection field.In the cladding, the acoustical field tends to zero as the radial distance r  increasing to infinite. Thus, the three displacement potentials ф2, у2, and x2 can be written as
ф 2 = B2 K n (a 2 r) cos n (0 -  0 0),< у 2 = D2K n(p2r)cosn (0 -  00 ), (3)Д2 = F2K n(P2r)sinn(0 -  00),

where a2 = J k l  -  k 2p2, P2 = л/k2 -  k22, kp2 = ю/Рр2, 
ks2 = ®/Vs2; B2, D 2, and F2 are the weighting coefficients.Using the displacement potentials, the displacement (U) and stress (t) in the rod and cladding can be easily obtained. At the interface of the rod and clad-
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T ab le  1. The value of n and representations of coefficients 
B\, Di, and Fi for the symmetric point source, axial force 
source, and radial force source

idues of the poles, for example, the displacement amplitude Url) of the guided waves can be written as
Source n B 1 D 1 F 1

Symmetric point source 0 1 0 0
Axial force source 0 ikz -1 0

Radial force source 1 —a 1

I
to

1
2 ^ 1 ^

(ю, r, 0, z ) = П̂-̂ 1 e k zcosn (0  -  00) (7)
k z  = k mдДwhere Д' = — , and k m is the wave-number corre-

d kz, msponding to the m th pole for a given frequency ю.
ding, displacement and stress are continuous and the boundary conditions at the interface r  = a are

U(1) = U 2

uzr> = U2)U01) = U02),(1 ) (2 )l rr l rr
t ( 1 )  _  T (2 )  
T r z  T r z

t (1 )  =  t ( 2 ) r 0 =  r 0 ,

(4)

where the superscripts (1) and (2) represent the fields inside and outside the rod, respectively. Equation (4) constitutes a linear equation group in which the number of the equations (six) is equal to that of the weighting coefficients. Therefore, all the weighting coefficients inside and outside the rod can be determined by Eq. (4).In the case of n = 0, i.e., the acoustical field is excited by an axisymmetric source, and there is no S H  wave. Thus, the displacement and stress components 
Uq and t̂  are equal to zero (E x = F1 = F2 = 0). Therefore, the linear equation group left four equations with four weighting coefficients.With Eqs. (1)—(4), the representation of displacement components are obtained. For example, theradial displacement component in the rod U(1) can be written as the following form

U(1)(ю, kz, r, 0) = ^cosn (0  -  00), (5)
where Д is the coefficient determinant of Eq. (4), and Дх can be obtained by applying the Cramer’s formulas.Equation (5) has many poles which can be determined by Д = 0. (6)This equation is just the dispersion equation of the guided waves. Then, the excitation displacement intensities of the guided waves can be given by the res-

3. NUMERICAL SIMULATIONFor the guided wave in the rod, because the propagation direction of the energy should be along the z-axis, it demands that the phase velocity of the guided wave less than the shear velocity of the cladding, i.e.,P2> 0. (8)In this condition, the dispersion equation is always a real or imaginary function for the guided wave with a real wave-number kz in the z-axis. Then, the bisection technique is used to search for all the roots of the dispersion equation, so that to obtain all the possible modes of the guided waves.To investigate the excitation characteristics of the guided waves, three source models: the symmetric point source, axial force source, and radial force source models are considered. The coefficients Bb Db and Fl of the direct field radiated by the three sources [22—24] are known quantities, and they are presented in Table 1. It should be noted that the source is difficult to be modeled in practical situation, especially in the case of placing the source in the middle of the rod to excite the acoustic field. In this paper, we don’t discuss the practical excitation of the source, but consider the excitation characteristics of the guided waves excited by these sources in theory.The Meitzler’s notation [25] for expressions of the guided waves is followed. For the guided waves excited by the three sources of this paper, the modes in the case of n = 0, here n is the order of acoustic field and the circumferential order, correspond to the axisym- metric longitudinal modes L (0 , m); and the case of n = 1, 2, 3, ..., correspond to non-axisymmetric flexural modes F(n, m) with the mode order m = 1, 2, 3, ... .Although the dispersion curves of the guided modes are independent on the source, different source types can excite different modes. The axisymmetric longitudinal modes L (0, m ) can be excited by axisymmetric sources (symmetric point source and axial force source). The non-axisymmetric flexural modes F(1, m) can be excited by non-axisymmetric (radial force) source.Four medium models for infinite-thickness cladding rod are chosen for numerical simulations, and their material properties are presented in Table 2. They can be sorted into two categories by their shear velocities. One category is “hard cladding model” that shear
ACOUSTICAL PHYSICS Vol. 56 No. 4 2010
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Table 2. Material properties used to model infinite-thickness cladding rods

Model Category P-wave velocity 
VP, m/s

S -wave velocity 
Vs , m/s

Density,
kg/m3

Radius, m

1 Rod 5500 3100 7800 r1 0.01
Hard cladding 6100 3250 2700 r2 д а

2 Rod 4100 2100 7800 r1 0.01
Hard cladding 5370 3100 2700 r2 д а

3 Rod 5500 3100 7800 r1 0.01
Soft cladding 5000 3050 2700 r2 д а

4 Rod 5500 3100 2200 r1 0.01
Soft cladding 5000 2500 2500 r2 д а

velocity of the cladding is larger than that of the rod, that is to say, Vs2 > Vs1. The other category is “soft cladding model” that holds the relation of Vs2 < Vs1. In the examples of this paper, models 1 and 2 belong to the hard cladding models, and models 3 and 4 belong to the soft cladding models.The four models can also be classified into other two categories by whether their material combinations allow or not allow the Stoneley wave exist. The Stone- ley wave will not exist in a planar interface of two elastic solid half-spaces until the acoustical parameters of two half-spaces meet the strict existence condition [26, 27]. While we find that for the model which is a rod surrounded by the infinite cladding, such existence condition of the Stoneley wave is still held. According to this existence condition, the material combinations of models 1 and 3 allow Stoneley waves exist, while those of models 2 and 4 don’t allow.It is divided into two sections in the following. First, the displacement spectra and dispersion curves are studied together to get primary comprehensions for the dispersion and excitation mechanisms of different modes, so that we can find out the dominant modes which hold the relatively larger displacement amplitudes and the suitable excitation frequency range. Second, the vibration distributions of the Stoneley modes and normal modes are investigated and summarized.Moreover, we also did the comparisons to prove the numerical results presented in this manuscript are correct. For example, when the material properties of the infinite cladding rod model are VS1 = 2950 m/s, VP1 = 5200 m/s, p1 = 19200 kg/m3, VS2 = 3180 m/s, VP2 = 4800 m/s, and p2 = 2845.3 kg/m3, which are the same as those of the example used in Fig. 24 in page 23 of the literature [8], the numerical results of dispersion curves calculated by our program are same as those in the Fig. 24. For the paper length limit, the calculated dispersion curves are not shown in this paper.

3.1. Dispersion Curves 
and Excitation Displacem ent SpectraIn order to analyze the dispersion and excitation characteristics in a straight forward view, the phase and group velocities dispersion curves are all illustrated along with their corresponding displacement curves. And for convenience, all the displacement curves in this paper are normalized against the value, which is slightly larger than the maximum value of the displacement amplitude, to keep the range of displacement variation between 0 and 1. Similarly, all the dispersion curves are also normalized against the shear velocity of the rod Vs1.The propagation characteristics of the guided waves are studied according to the hard and soft claddings. First, the results of the hard cladding models 1 and 2 are presented. Then, those of the soft cladding models 3 and 4 are analyzed.3.1.1. Hard cladding models, Vs2 > Vs1. Models 1 and 2 belong to this case. The material combination of model 1 satisfies the existence condition of Stoneley wave, while that of model 2 does not.(a) Model 1Figures 2a and 2b present the dispersion curves of L(0, m) (m = 1, 2, ..., 6) and F(1, m) (m = 1, 2, ..., 11) modes in model 1. Moreover, the displacement spectra of the L(0, 1) and L(0, m) (m = 2, 3, ..., 6) modes, excited by the symmetric point source, with the radial distance r  = 10 mm are shown in the left and right vertical axes ofFig. 2c, respectively; and those ofthe F(1, 1) and F(1, m) (m = 2, 3) modes excited by the radial force source are shown in the left and right vertical axes of Fig. 2d, respectively. In Figs. 2a and 2b, the solid, dashed, and dotted lines represent the phase and group velocity dispersion curves, and the Vs1 and Vs2, respectively. And, in Figs. 2c and 2d, the solid and dashed lines represent the radial and axial direction displacement components, which are denoted as Ur and Uz for short, respectively.As shown in Figs. 2a and 2b, the guided waves in model 1 can be classified into two categories by their high-frequency velocity asymptotes. The first category
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Phase and group velocity/ Vs1 (a) Phase and group velocity/ Vs1

Displacement/1.2e2 Displacement/2.5e—3 Displacement/1.25e6 Displacement/1.25e3

Frequency, MHz

Fig. 2. In model 1, the phase and group velocity dispersion curves of the (a) L(0, m) (m = 1, 2, ..., 6) and (b) F(1, m) (m = 1, 2,..., 
11) modes, in 0—3 MHz; the displacement spectra of (c) the Stoneley mode L(0, 1) in the left coordinate and the normal modes 
L(0, m) (m = 2, 3, ..., 6) in the right coordinate, excited by the symmetric point source in 0—3 MHz; and (d) the Stoneley mode 
F(1, 1) in the left coordinate and the normal modes F(1, m) (m = 2, 3) in the right coordinate, excited by the radial force source 
in 0—1 MHz, at the radial distance r = 10 mm.

is the lowest order m odes (m =  1) whose phase and 
group velocities in the high-frequency range tend to 
the velocity o f the Stoneley wave (Vst). This Stoneley 
wave is the wave propagating in the interface o f two 
half-infinite solid spaces w hich has the same acoustic 
param eters o f the rod and the cladding o f m odel 1 . 
This category o f the m odes is nam ed as the Stoneley 
m odes in the cylindrical interface. In  contrast w ith the 
non-dispersive Stoneley waves in p lanar interface, 
these Stoneley waves in cylindrical interface are highly 
dispersive. T heir phase and group velocity dispersion 
curves start from their cutoff frequency, vary w ith the 
increasing frequency, and finally end at high frequency 
w ith the asym ptote Vst th a t is sm aller than  the sm aller 
one between the shear velocities o f the rod and the 
cladding (Vss). For instance, the m odes L(0, 1) in 
Fig. 2 a and F (1 , 1) in Fig. 2b are the Stoneley m odes 
in this case. The cutoff frequencies o f the modes L(0, 1)

and F(1, 1) are nonzero and zero (respectively) at 
w hich the phase velocities are bo th  the VS2 (the shear 
velocity o f the cladding). T heir high frequency velocity 
asym ptote is the Stoneley velocity (here Vst is about 
3077 m /s), w hich is below the dotted line represents 
the smaller shear velocity Vss =  Vs1 =  3100 m /s  (the 
shear velocity o f the rod).

The second category can be nam ed as the “norm al 
m odes” o f w hich phase and group velocities in the 
high frequency range tend  to  the Vss. Here, the Vss is 
the shear velocity o f rod ( V  ̂=  Vs1 =  3100 m /s), and it 
is higher than  the Stoneley velocity. For instance, the 
m odes L(0, m) (m > 1) in Fig. 2a and F(1, m) (m > 1) 
in Fig. 2b belong to  the norm al m odes, and they have 
nonzero cutoff frequencies at w hich the phase velocity
is Vs2.

From  the dispersion curves, we can obtain that 
there is infinite guided modes probably exist. However,

ACOUSTICAL PHYSICS Vol. 56 No. 4 2010
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Displacement/1.8e6 Displacement/3e6

Fig. 3. In model 2, in 0—0.5 MHz, the phase and group velocity dispersion curves of the normal modes (a) L(0, m) (m = 1, 2, 3, 4) 
and (b) F(1, m) (m = 1, 2, ..., 7); the displacement spectra of (c) the L(0, m) (m = 1, 2, 3, 4) modes excited by the axial force 
source, and (d) F(1, m) (m = 1, 2, ..., 7) modes excited by the radial force source, at r = 10 mm.

for a given source, only one or few of them is/are dominant and can be excited and received. While which modes are the domait modes? This problem is discussed by analyzing the excitation characteristics in the following.As shown in Figs. 2c and 2d, the displacement amplitudes of the Stoneley mode L (0 , 1) or F(1, 1) at the interface is extraordinarily larger than those of the other normal modes L(0, m) or F(1, m) (m > 1), respectively. Specially, at any radial distance, the Stoneley mode always hold the better excitation sensitivity than the normal mode in model 1. The normal modes are impossible to be seen in full-waveforms because they are seriously covered by the Stoneley mode. In model 1, there is an important fact that the

guided waves received in actual measurement are the Stoneley waves instead of the normal waves.Furthermore, we can obtain the suitable excitation frequency range from the displacement spectrum. As shown in Figs. 2c and 2d, the displacement amplitudes strongly depend on frequency. Each component receives its maximum amplitude at the frequency near where the mode reaches its minimum group velocity (Vmin). For example, in Fig. 2c, Ur and Uz of the L(0, 1) mode reach their maximums at 0.276 and 0.279 MHz (respectively), which are close to 0.289 MHz where is the mode’s Vgmin. This property is useful for determination of the suitable excitation frequency range. To effectively excite one guided mode, the frequency
ACOUSTICAL PHYSICS Vol. 56 No. 4 2010
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Fig. 4. In model 3, the phase and group velocity dispersion curves of the Stoneley modes (a) L(0, 1) and (b) F(1, 1) in 0—3 MHz; 
and the displacement spectra of the Stoneley modes (c) L(0, 1) excited by the axial force source in 0—3 MHz, and (d) F(1, 1) 
excited by the radial force source in 0—1 MHz.

band should be taken nearby the frequency where this mode reaches its Vgmin.(b) Model 2Model 2 also belongs to the hard cladding case and its material combination does not allow the Stoneley wave exist. The dispersion curves of both L(0, m) (m = 1, 2, 3, 4) and F(1, m) (m = 1, 2, ..., 7) modes are presented in Figs. 3a and 3b, respectively. And the displacement spectra of the corresponding modes, L(0, m) (m = 1, 2, 3, 4) modes excited by the axial force source and F(1, m) (m = 1, 2, ..., 7) modes excited by the radial force source, with r  = 10 mm are shown in Figs. 3c and 3d, respectively.In the hard cladding model 2, there are infinite guided modes which are the normal modes. As seen from Figs. 3a and 3b, the phase velocity dispersion curves start at their cutoff frequencies with the same value which is the shear velocity of the cladding, and

decrease with the increasing frequency; yet the variation tendencies of the group velocity dispersion curves are so complex that the curves intersect with each other. While all the curves are asymptotic to the dotted line that represents the Vss, which is the shear velocity of the rod at high-frequency.As seen from Figs. 3c and 3d, in model 2, the dominant modes no longer limit to the lowest order modes but also include the higher order modes. For instance, as shown in Fig. 3c, the ratio of the maximum displacement amplitude of the L(0, 2) mode to that of the L(0, 1) mode in model 2 is above 20%. And as shown in Fig. 2c, this ratio is much smaller, below 0.02%, in model 1. Thus, both the L(0, 1) and L(0, 2) modes are the dominant longitudinal modes in model 2. And as shown in Fig. 3d, the F(1, 1), F(1, 2), and F(1, 3) modes are the dominant flexural modes. Also in Fig. 3d, the displacement curves of Uz of the F(1, 1)
ACOUSTICAL PHYSICS Vol. 56 No. 4 2010



PROPAGATION CHARACTERISTICS OF GUIDED WAVES 419and F(1, 3) modes, which have two peaks, are more irregular.Therefore, in model 2, not only the lowest order modes but also the former higher order modes could be excited, and these normal modes have much more complicated variation relations between excitation displacement and frequency.
3 .1 .2 .  S o f t  c la d d in g  m o d e ls ,  Vs2 < Vs1. Models 3 and 4 belong to this case. Model 3 satisfies the existence condition of the Stoneley wave, while model 4 does not. And it is found that no normal mode could be excited in the soft cladding models by numerical simulation.(a) Model 3In Figs. 4a and 4b, dispersion curves of the L (0 , 1) and F(1, 1) modes are presented. And displacement spectra are shown in Figs. 4c and 4d.As shown in Figs. 4a and 4b, only the mode L(0, 1) or F(1, 1) exist and are highly dispersive in the cylindrical interface of model 3. For instance, the high-frequency velocity asymptote of the Stoneley mode L(0, 1) in Fig. 4a is the Vst (here is about 3044 m/s), which is below the smaller shear velocity Vss = Vs2 = 3050 m/s.In model 3, the dominant mode is the Stoneley mode. And as shown in Figs. 4c and 4d, the variation relationships between the displacement amplitudes and frequency is relatively simple. And the suitable excitation frequency range corresponds to the frequency neighborhood where one mode receives relatively larger intensities. For instance, the suitable excitation frequency range of the F(1, 1) mode in Fig. 4d is in 0.03—0.12 MHz which includes 0.066 MHz corresponding to the maximum Ur and the Vgmin.(b) Model 4Because the material combination of model 4 does not satisfy the existence condition of the Stoneley wave, and model 4 belongs to the soft cladding model, no guided modes can be found in model 4.From above analysis, the displacement components of all the guided modes highly depend on frequency. The displacement curve starts from the mode’s cutoff frequency and end at infinity with the same high-frequency asymptote zero. Moreover, the suitable excitation frequency range of the guided mode is in the neighborhood of the frequency where this mode reaches its minimum group velocity (Vgmin). As each mode receives its maximum displacement at the point of frequency near where this mode reaches its V .gminIn the following section, we investigated the vibration distributions of both the normal modes and the Stoneley modes on the radial cross section.

3.2. Vibration Distributions 
on the R ad ia l Cross SectionTaking model 1 for example, variation relations of the Ur and Uz of both the Stoneley modes and the nor-

ACOUSTICAL PHYSICS Vol. 56 No. 4 2010

Fig. 5. In model 1, variation curves of Ur and Uz of the 
dominant modes with increasing radial distance r from 0.2 
to 50 mm: (a) those of the Stoneley mode L(0, 1) excited 
by the symmetric point source at 0.276 MHz; (b) those of 
the Stoneley mode F(1, 1) excited by the radial force 
source at 0.066 MHz; (c) those of the normal mode L(0, 2) 
excited by the symmetric point source at 0.834 MHz.
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m al m odes versus the radial distance r  are analyzed. The 
r  varies w ith a constant increased interval Ar =  0 .2  m m  
from  the origin through the interface r  =  10 m m  to the 
infinite.

Figures 5a, 5b, and 5c presents the vibration distri
butions o f Ur and Uz o f the L(0, 1) m ode excited by the 
sym m etric po in t source at 0.276 M H z, the F(1, 1) 
m ode excited at 0.066 M H z, and the L (0 , 2 ) m ode 
excited by the sym m etric po in t source at 0.834 M Hz. 
T he solid, dashed, and dotted lines represent variation 
curves o f Ur and Uz, and the interface tha t r  =  10 mm .

As shown in  Fig. 5a, the displacem ent com ponent 
am plitudes o f the Stoneley m ode L(0, 1) highly 
depend on the r  varied from  the rod centre to the 
receiver. At origin (r  =  0), Ur is zero, and Uz is a t its 
m axim um . In  the rod, w ith  increasing r , variation 
curve o f Ur first increases to the m axim um  peak and 
th en  decreases slightly at the point near the interface, 
while tha t o f  Uz first decreases to a local m in im um  
th en  bounces back slightly. These curves are no t 
m onotone, as the displacem ent potentials o f  the L(0, 
1) m ode in  the rod are the linear com bination o f the 
n th -o rder m odified Bessel functions I n and Kn, as 
shown in Eq. (1). Furtherm ore, two curves intersect at 
the po in t denoted as “r j” in  Fig. 5a. Uz is larger th an  Ur 
before the intersection r1, and then  varies to be the 
sm aller one w hen r  is larger th an  r1. Special atten tion  
is given to  the case tha t guided wave propagates in  the 
cladding. W hen r  keeps increasing and passes the 
interface w hich is represented as the dotted line in  
Fig. 5a, variation curves o f Ur and Uz bo th  keep 
m onotonously declining to  zero w hen r  tends to infi
nite.

F rom  Fig. 5b, the displacem ent com ponents o f the 
Stoneley m ode F(1, 1) highly depend on r, too. H ow 
ever, for each F(1, 1) m ode, Ur is always larger th an  Uz 
a t the sam e r  along the w hole cross section, i.e. there is 
no intersection o f the solid and dashed curves. A t o ri
gin, Ur is a t its m axim um , and Uz is equal to zero. In  
the inner layer, curve o f Ur decreases slightly w ith  the 
increasing r, yet curve o f Uz increases and reaches its 
m axim um  at the interface. W hile r  crosses through the 
interface and keeps increasing, bo th  curves o f Ur and 
Uz keep declining sharply to zero at infinity.

As shown in  Fig. 5c, the vibration distribution o f 
the norm al m ode L (0, 2) are different from  those o f 
the Stoneley m odes. First, the variation relations 
between the displacem ent com ponents and r  o f the 
norm al m ode L (0, 2) are m uch  m ore com plex than  
those o f the Stoneley m ode L(0, 1). Second, the m ode 
obtains its m axim um  displacem ent am plitudes in  the 
inner layer, and it looks like the energies o f the L (0, 2) 
m ode are trapped in  the inner layer. In  m odel 1, the 
inner layer holds the sm aller shear velocity. Moreover, 
after analyzed num erous vibration distributions o f the 
o ther norm al m odes in  m odel 1 , we found tha t m ost o f 
the norm al m odes also obtained their m axim um  
am plitudes in  the inner layer.

Consequently, the Stoneley waves L(0, 1) and F(1, 1) 
are the interfacial waves propagated along the cylindri
cal interface between the rod and the infinite cladding 
in  m odel 1. T heir displacem ent am plitudes obtain 
their m axim um  near the interface, and are m o no to 
nously decaying w hen the radial distance r  is far from  
the interface into the cladding, finally approaching to 
zero at infinity. W hile the norm al waves have the 
“energy-trapped” trend. It looks like their m axim um  
displacem ent am plitudes are trapped in  the layer 
w hich has the smallest shear velocity.

Generally, the un itary  pictures o f displacem ent 
contributions o f the guided m odes on  the radial direc
tion  cross section depend on  the properties o f the dif
ferent excitation sources. In  the case o f L(0, 1) m ode 
excited by either the sym m etric point source or the 
axial force source, Ur is zero at origin, and Uz is n o n 
trivial. In  the rod, variation curve o f Ur rises w ith the 
increasing r, yet curve o f Uz m ay drop or rise; and two 
curves have intersection. In  the cladding, Ur is always 
larger th an  Uz a t the sam e r.

W hile in  the case o f the F(1, 1) m ode excited by the 
radial force source, Ur is nontrivial a t origin, and Uz is 
zero. Moreover, there is no intersection between the 
radial and axial curves, w hich m eans tha t Ur o f  F(1, 1) 
m ode is always larger th an  Uz a t the sam e radial dis
tance through the w hole radial direction cross section. 
Furtherm ore, the variation curves o f all the guided 
m odes tend  to zero at infinity, because there is no 
acoustic field.

5. C O N C L U SIO N S

T he stability and robustness o f num erical calcula
tion  for num erous dispersion curves are ensured by 
employing the bisection technique to the calculation 
o f the com plex dispersion function. And then , the 
essential dispersion characteristics o f the guided waves 
propagated in  the m odels, w hich m aterial com bina
tions allow or n o t allow the Stoneley waves exist, are 
investigated. It is found that all the m odes have their 
high-frequency velocity asym ptotes. For the Stoneley 
m odes, their velocity asym ptotes are the Stoneley 
wave velocity. For the norm al m odes, those are the 
sm aller one between the ro d ’s and the cladding’ shear 
velocities. It is also found that no norm al m ode exists 
in  the soft cladding m odel whose ro d ’s shear velocity is 
larger th an  the cladding’s.

T he excitation sensitivities o f the guided waves 
highly depend on  the frequency. T he displacem ent 
am plitude o f each m ode receives its m axim um  in  a fre
quency range including the frequency w here this 
m ode’s group velocity reaches its m inim um . H ence, it 
is appropriate to set the source excitation frequency to 
a p roper range to  excite m odes w ith stronger signal 
intensities. Moreover, the dom inant m odes are distin
guished in  different models. For the m odels w hich 
m aterial com binations satisfy the existence condition 
o f Stoneley wave, only the lowest b ranch  is the dom i
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PROPAGATION CHARACTERISTICS OF GUIDED WAVES 421nant mode, which is to say, either the Stoneley mode L(0, 1) excited by the symmetric point source or axial force source, or the Stoneley mode Д1, 1) excited by the radial force source, can be excited. For other models that don’t satisfy the existence condition, generally, the former lower order modes L (0 , m) and Д1, m) 
(m < 3) are the dominant modes, which amplitudes are larger than those of the other higher order modes L(0, m) and Д1, m) (m > 3), respectively.The vibration distributions of the normal modes and the Stoneley modes are different. The energies of the normal modes are trapped in the layer which has the smaller shear velocity, while the Stoneley modes are the interfacial waves propagated in the cylindrical interface between the rod and cladding. Moreover, in the case of each lowest branch flexural mode Д1, 1), radial displacement component is always larger than axial displacement component at the same radial distance through the whole radial direction cross-section.Both the dispersion characteristics and excitation mechanisms of the guided waves propagated in a rod surrounded by an infinite cladding are studied together in this paper, while further research focusing on the modeling experiments should be undertaken in laboratory in the future.
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