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Abstract—The effect of a surface impedance load on the properties of axisymmetric quasi-Rayleigh waves
propagating along the boundaries of a cylindrical cavity is investigated. By solving the problem by means of
the impedance method, a dispersion equation for these waves is obtained. It is shown that the equation can
be represented as the condition that the determinant of the sum of impedance matrices of the load and the
medium is zero. Analysis of this equation allows one to investigate the effect of the surface load on the behav-
ior of quasi-Rayleigh waves and on their critical frequencies. The conditions that should be met by the imped-
ance load for quasi-Rayleigh waves to be absent near the cavity or for one or two such waves to exist are deter-
mined. The choice of the load is specified for the propagating quasi-Rayleigh wave to possess preset disper-
sion properties. The conclusions drawn on the basis of this study are illustrated by several examples of load

models that can be implemented in practice.
DOI: 10.1134/81063771010040032

Surface waves in elastic isotropic media have been
the subject of numerous publications. Reviews
devoted to classification and practical application of
such waves can be found in, e.g., [1, 2]. An important
class of surface waves is formed by the Rayleigh-type
waves propagating along plane or curved boundaries.
For example, Biot [3] obtained the dispersion charac-
teristics of axisymmetric quasi-Rayleigh waves and
Stoneley waves near a cylindrical cavity. The behavior
of waves with a more complex symmetry in the high-
frequency approximation was considered in [1, 4]. It
was shown that the phase and group velocities of these
waves depend on the curvature radius of the surface.
The problem of describing the quasi-Rayleigh waves at
a plane boundary of an isotropic half-space with a two-
component surface impedance load, as well as the
problem of determining their dispersion characteris-
tics, was studied in [5, 6]. In these publications, the
load was represented by a diagonal impedance matrix
describing the linear relation between the stress and
velocity vectors. Publications [5—8] are examples of
using the impedance method for determining the
properties of different types of waves under specific
types ofloads (e.g., cracked or inhomogeneous layered
media).

In the present paper, we study the properties of axi-
symmetric modes near an infinite cylindrical cavity in
an elastic medium the surface of which is subjected to
an impedance load. The latter is uniformly distributed
and acts locally. The radial and tangential stresses

caused by this load depend on each of the displace-
ment components (normal and tangential ones). The
load impedance matrix is assumed to be Hermitian.

The dispersion properties of quasi-Rayleigh waves
near a cylindrical cavity in the absence of the imped-
ance load at the boundary are well known [3]. We
briefly describe the method of their determination,
which allows us to give a natural interpretation of the
solution to the problem formulated in the present
paper. Let us consider harmonic waves with a fre-
quency o (the factor e ™’ is omitted below for brevity)
that propagate near a cavity with a radius a. The elastic
medium is characterized by the Lame constants A and
1 and by the density p. The wave number and the
velocity of longitudinal waves are k; = o/c; and ¢; =

J(L+21)/p , respectively. For shear waves, the corre-

sponding quantities are k, = @/c,and ¢, = J)/p . Tak-
ing into account the geometry of the problem, it is
convenient to use the cylindrical coordinate system
(r, 8, 7) with the origin of coordinates at the axis of the
cavity. It is known that the displacement vector can
always be represented as [9]

u(u,, ug, u,) = divg + curly,

where ¢ is the scalar potential and y = (y,, Wg, Y,) is
the vector potential. Since, in the axisymmetric case,
the form of the solutions does not depend on the angle
0, the azimuth displacement u, and the derivatives
Oy,/00 and Oy,/00 involved in the expressions for u,
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and u, are zero. As a result, the displacement vector
components take the form

u =90 0y

=5 u, = QL LY — 0, (1)
-

oz Y o0z or r

where v = yg. The wave equations describing axisym-
metric waves in an elastic medium have the form [3]

2 2
06,100 ,0¢0 _ _p24 )
o ror g7
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\‘V+__“V_“_V+_“V=—kt\,v. (3)

o ror /2 o7

According to the Hooke law, the normal and tan-
gential stresses are expressed through the displace-
ment vector components as

Gﬁf)=2u%+k(ﬁ—%+bﬁ+%),
or or r 0z

© _ (5_% 5_%)
o =W T o)

(0) O _(OT

We introduce the stress vector 6~ = (o,,, O,

Then, for the free boundary, the following condition is
valid:

" =0atr=a @)

We take into account that the wave of interest, which
propagates along the surface, attenuates when it pene-
trates into the elastic medium. This means that

o,y — 0 at r — oo. 5)

Equations (2) and (3) and condition (5) are satisfied by
the potentials

¢ = AKy(kBir)e™, (6)

v = 4,K (kBr)e™. )

Here, k is the wave number of the quasi-Rayleigh
wave; K, and K| are zero-order and first-order modi-
fied Bessel functions of the second kind, respectively;
and A, and A,, are arbitrary constants. In Egs. (6) and
(7), we introduced the dimensionless parameters 3; =

J1—Ek /k? and B, = JJ1-&, where & = k/k = ¢/c,

is a dimensionless quantity identical to the ratio of the
Rayleigh wave velocity ¢ to the shear wave velocity c,.
We note that an undamped quasi-Rayleigh wave can
exist at a free boundary only when [3; and J3, are real,
which corresponds to & < 1. Substituting potentials (6)
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and (7) in Egs. (1), we obtain the displacement vector
# in the form

n = ( ”rj = —keik{ Bk (KBir) K (KB,r) j?l. (8)
u —iKy(kBir) B:Ko(kBr)

Here, we used the notation 4 = (4, 4,)- We introduce

the elastic impedance matrix of the medium Z®©®

determining the linear relation between the stress "

4

and velocity (—iw# ) vectors in the absence of the
impedance load at the boundary [8]:

5% = —i0nz%a. 9)

As is shown below in Appendix A, the matrix Z© for
potentials (6) and (7), which describe an undamped
quasi-Rayleigh wave, has the following form at the
boundary of the cavity:

28, 1) = ipeX(&, 1)

j 10

= ipc{ x’r(a: X) _lxrz(aa X) j’ ( )
ixrz(a’ X) xzz(a’ X)

where the dimensionless elements x; of the matrix X©O
have the form

SBLBIB) 2

= -=, 11
WSO = e ey Fey )
. zp
OO sErpy ey
R
D By -rpy e Y
Here, we introduced the function [Fe) =

Ky(ex/€)/K (ey/E) and the dimensionless frequency
¥ = k. Boundary condition (4) means that, at r = a,
Eq. (9) becomes homogeneous. In this case, it has a
nontrivial solution only when the following equation is
satisfied:

detZ® =0 or detX® =0. (14)

Using Egs. (11)—(13), we represent this equation in
the form

(2-8)'F(B) - 4BBF(PB)-2BE /x = 0. (15)

It describes the dispersion properties of a quasi-Ray-
leigh wave near a cylindrical cavity and coincides with
the equation obtained by Biot [3].

Let us proceed to considering the problem stated
above, i.e., to the case where an impedance load is
present at the boundary. The load causes additional

surface stresses described by the vector g =

@) (DNT

(6,.,0,.) . The impedance matrix of such a load
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ZL describes the linear relation between the stress
5" and velocity (—iw ) vectors:

5" = —inz"a. (16)

For convenience, we introduce the matrix X* and the
quantities X;; in the following way:

XD = (ipe)'Z, XD = ( X, _inzj. (17)

inz Xzz

Because of the linearity of the relations between
stresses and velocities in Egs. (9) and (16), the result-

ing stress vector 5’ at the boundary of the cavity is
expressed as [5]

a(ﬂ — C_F(O)+ C_F(L).

(18)
For the boundary of the cavity, the following boundary
condition is valid:

a(ﬂ

=0 at r=a (19)

Substituting stresses (9) and (16) in Eq. (18) and
applying boundary condition (19), we obtain a homo-
geneous equation for determining the vector #. The
condition of existence of a nontrivial solution to this
equation leads to a dispersion equation for quasi-Ray-
leigh waves at the boundary with the impedance load:

det(ZP +Z"y = 0 or det(X"” +X) = 0. (20)

In view of Egs. (10) and (17), we represent it in the
form

(X, +x,,(&, ][ X, +xzz(§ 1]
[X,.+%,.(& 0]

Let us consider the limiting cases. In the absence of
the load at the boundary, i.e., X& = 0, Eq. (20) takes
the form of Eq. (14). In the limit y — oo, for the diag-
onal impedance matrix of the load (X, = 0), Eq. (21)
transforms to the dispersion equation for a quasi-Ray-
leigh wave on a plane in the presence of a two-compo-
nent impedance load, which was derived in [5].

2D

It is well known that a quasi-Rayleigh wave near a
cylindrical cavity has critical frequencies ®., = ¢/a
such that a wave with a frequency lower than o, can-
not propagate in it. Let us consider the dependence of
Yer ON the impedance load. The frequency is critical if
the velocity of the quasi-Rayleigh wave for it is identi-
cal to the velocity of shear waves in the elastic medium,
i.e., at § = 1. Substituting this value in Eq. (21), we
obtain

(X, = 200 ) (X = By Ky (e B Ks (s BT))

(22)
= (X, + 1),
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where B = A1 —k;/ks is a constant depending on
the elastic properties of the medium. We note that
loads can exist with y — oo, for which the propaga-
tion of quasi-Rayleigh waves is impossible for any fre-
quencies, except for the case of waves on a plane. This
follows from the analysis of Eq. (22) in the limit
Xcr — 0

er(Xzz_B;r) = (Ier (23)

which gives the equation for determining this kind of
load.

Now let us determine the type of load that provides
preset properties of quasi-Rayleigh waves. For illustra-
tion and for convenience, we consider the diagonal
impedance matrices (X,, = 0). In this case, Eq. (21)
can be represented in the form

[Xr + 2,8 I Xee + %85 0] = (&, 1),

where (&, ) = [x,.(&, )()]2 . Evidently, at fixed values

of & and y, it describes a hyperbola in the (X, X))
plane. Thus, for any point (&', %'} (or any region in the
(&, 1) plane), there always is a hyperbola (or region,
respectively) in the impedance plane (X,,, X, ) such
that, in the presence of a load belonging to this hyper-
bola (or region), the dispersion curve of the quasi-
Rayleigh wave passes through this point (or region in
the (&, ) plane). In [5], similar hyperbolas were con-
sidered for the case of quasi-Rayleigh waves on a plane
boundary. For example, we assume that the point
(&', y) belongs to the dispersion curve of the quasi-
Rayleigh wave in the absence of the surface load; i.e.,
it is the solution to Eq. (15). In this case, Eq. (24) will
describe a hyperbola lying in the (X,,, X,,) plane and
passing through the point (0, 0) corresponding to zero
load; in this case, Eq. (24) takes the form

(er/xrr(a: X) + 1)(Xzz/xzz(a: X) + 1) =

Let us consider the behavior of the hyperbolas
described by Eq. (24) and their dependence on the
choice of the point (&', ¢'). First, we consider the effect
of the quantity &' < (0, 1] at a fixed value of '. This
effect is illustrated in Fig. 1 for the case of ' = 2.5.
Hyperbolas 7, 2, and 3 describe the impedances X,
and X, at which the characteristics of quasi-Rayleigh
waves pass through the points (1, %), (¥, %'} (where
&.= 0.58), and (0.35, y'), respectively. One can see
that, as the parameter &' decreases from 1 to 0, the cor-
responding hyperbolas at a fixed ' shift rightward and
upward, beginning from curve I, to the hyperbolas
with X,,, X, — . It should be noted that, in the
anedance plane (X,,, X,,), three regions are formed
(regions I, I, and Il in Fig. 1). Forthe load belonging
to region I, which lies below the left-hand branch of
hyperbola 1, the propagation of a quasi-Rayleigh wave
with a dimensionless frequency lower than ' is impos-
sible. In the second region lying between the branches
of hyperbola I, only one quasi-Rayleigh wave propa-

+1)%,

(24)
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Fig. 1. Hyperbolas in the (X,,, X..) plane at a fixed value of
¥x' = 2.5 and at 6 = 0.4 for different values of &: § = (/) 1,
(2) &, and (3) 0.35.

gates, its dispersion curve possessing a certain velocity
&' € (&, 1] at ¢'. Finally, when the load belongs to
region I1I, two surface waves propagate with different
velocities &' and E!" at %'. Hyperbola 2 corresponds to
such a value of &' = &, at which its left-hand branch
touches the right-hand branch of hyperbola /. This
means that, if Eq. (24) describes the behavior of two
quasi-Rayleigh waves and the dimensionless velocity
of one of them reaches the value &' = 1 at ', then, at
any load lying in region I1I, the other wave at a dimen-
sionless frequency 7' will propagate with a velocity

gl<k.

Now, in Eq. (24), we take a fixed value of &' and
consider the effect of the parameter ' € (0, o) on the
behavior of the corresponding hyperbolas in the
(X, X)) plane. This behavior is illustrated in Fig. 2 for
&' = 0.8. Hyperbolas 1, 2, and 3 describe the imped-
ances X,, and X_, at which the characteristics of the
quasi-Rayleigh wave pass through the points (&', ),
(&', %), where y. = 0.46, and (&', 0.25), respectively. As
x' decreases from oo to 0, the hyperbolas shift upward
and rightward from hyperbola 7 to the values X,
X, — oo, which correspond to the point (€', 0). Asin
the first case, we consider three regions (I, 11, and 11I)
in Fig. 2. The branches of hyperbola /bound region 11,
for which only one quasi-Rayleigh wave is possible
with the velocity &'. In the presence of a load belonging
to region I (below the left-hand branch of hyperbola 7),
the quasi-Rayleigh wave with the velocity &' does not
exist, whereas, in region I1I, two such waves propagate
with different values of ! and y'' at £'. Hyperbola 2
touches hyperbola 7 at a certain point. The value of y,
corresponds to the maximal value of %' of one of the
waves, for which the propagation of two quasi-Ray-
leigh waves is possible with the velocity &'. We note
that, as an example, here and below, the Poisson’s ratio
of the elastic medium, o, was chosen to be 0.4, which
corresponds to such materials as lead or glass. The
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Fig. 2. Hyperbolas in the (X,,, X;.) plane at a fixed value of
€' = 0.8 and at o = 0.4 for different values of y: x = (1) oo,
(2) % and (3) 0.25.

method of determining the values of . and &, is
described below in Appendix B.

It is of interest to consider the specific case (&, ) =
(1, o), which corresponds to a quasi-Rayleigh wave
propagating over a plane with the velocity of shear
waves. The dispersion curve passing through this point
is described by Eq. (23). If X,, = 0, the corresponding
equation will describe a hyperbola in the (X,, X,)
plane, which divides this plane into three regions. If we
use the load parameters below the left-hand branch of
the hyperbola, no quasi-Rayleigh waves can propa-
gate, no matter what their frequencies are. For imped-
ances lying in the region between the branches of the
hyperbola, propagation of one quasi-Rayleigh wave is
possible at certain frequencies. If the load belongs to
the region above the right-hand branch of the hyper-
bola, at certain frequencies we obtain a simultaneous
propagation of two quasi-Rayleigh waves. One of them
can have a dispersion characteristic passing through
any point of the (&, x) plane, whereas the dispersion
characteristic of the other wave should always lie below
the curve described by the equation (see Appendix B)

(1+VEE 1) = %,(& NB] +x.:(&, 1))

As examples, we consider several impedance load
models that illustrate their influence on the properties
of quasi-Rayleigh waves. The firs model is a cylindrical
cavity filled with a nonviscous fluid. The density of the
fluid is p;, and the wave number of elastic waves in it is
k;. We represent the fluid as an impedance load. For it,
in the matrix X), the only nonzero element is X,. The
acoustic impedance Z; of the fluid is identical to the
ratio of the normal pressure in the fluid to the radial
velocity [9]. Taking into account the definition of the
matrix X, we determine the element X,

pAy(kaa)

er = & ’
pol (kaa)

(25)
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Fig. 3. Dispersion characteristics of quasi-Rayleigh waves
in the presence of impedance loads given by Eq. (32) atc =
0.4 for different values of //a and g: //a = (1) 0, (2, 3) 0.05,

and (4 0.1;g=(2) 1 and (3, 4) 3.

where o0 = /1 — ézk;/kf . Here, I, and [, are the zero-
and first-order modified Bessel functions of the first
kind, respectively. Substituting of Eq. (25) in Eq. (20)
yields the dispersion equation

(2-8)°F(B)) - 4B,B.F(B,)

ped2 e pA(0x/8) T
b5 [x aocpll(owc/é)} 0

In the fluid-filled cavity, when & > &, this equation
describes the Stoneley waves monotonically attenuat-
ing along the radius in the direction from the boundary
into the fluid or into the solid; when k <, it describes
the modes “oscillating” along the radius in the fluid
and monotonically attenuating in the solid. The dis-
persion equations for these waves have been derived
and analyzed in many publications, e.g., in [3]. The
above consideration describes the alternative method
of their derivation, as compared to the method used in
the aforementioned publications.

Let us consider another load model. We assume
that the surface of the solid is covered with a thin
cracked layer with the density p® and height /, the lat-
ter being small compared to the shear wavelength in
the elastic medium: / <€ A,. The characteristic trans-
verse size d of the cuts of the medium in this layer is
assumed to be small: d <€ A,. In addition, we assume
that the shear waves’ velocities in the layer and in the
medium are identical. The load impedance matrix has
the form [5, 6]

XD = g{ Qo j’
0 Q

where Q = k,/and g = p®P/p. To estimate the limits of
applicability of this model, we assume that the height

(20)
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of the layer is much smaller than both the radius of the
cavity and the wavelength: / € g and / < A,. Then, mul-
tiplying both inequalities by k;, we obtain the applica-
bility conditions in the form Q <€ y and Q < 2r.

Figure 3 shows the dependences of the dimension-
less velocity & on the dimensionless quantity y~! for
quasi-Rayleigh waves in the case of the load described
by Eq. (26) for different values of //a (or the identical
quantity €2/y) and g. In the case of Q = 0, which cor-
responds to the absence of load (curve /), the disper-
sion characteristic of the quasi-Rayleigh wave is
described by Eq. (15). Curves 2 and 3 correspond to
Q/y =1/a=0.05and g= 1 and 3, respectively. Curve 4
corresponds to //a = 0.1 and g = 3. One can see that,
when the parameter //a or g increases, the effect of the
load on the properties of quasi-Rayleigh waves grows.
For example, on the surface of the cavity, two quasi-
Rayleigh waves can exist and, the greater the ratio //a,
the smaller the critical frequency of each of these
waves. According to the conditions of applicability
formulated above for the model under consideration,
at Q # 0, the dispersion curves most adequately predict
the behavior of quasi-Rayleigh waves in the low-fre-
quency range, i.e., at large values of y 1.

Thus, in this paper, we considered the properties of
quasi-Rayleigh waves near a cylindrical cavity in the
presence of a surface impedance load. By means of the
impedance method, we derived the dispersion equa-
tion describing the behavior of such waves and showed
that this equation can be represented by the condition
that the determinant of the sum of the impedance
matrices of the load and the medium is zero. In various
limiting cases, this equation takes the forms of well-
known results [3, 5]. Further analysis of this equation
allowed us to determine the dependence of the critical
frequency of the quasi-Rayleigh wave on the cavity
boundary load. In particular, we showed that there
exists a load such that it permits the presence of a
quasi-Rayleigh wave only in the case of a plane bound-
ary. We also considered the problem of choosing the
two-component impedance load so that the dispersion
curve of the quasi-Rayleigh wave passed through a
given point (&', y'). We determined the corresponding
condition for this load. It describes hyperbolas in the
(X, X)) plane. The influence of the chosen point
(&', y) on the position of such a hyperbola was ana-
lyzed in detail. It was shown that the impedance plane
is divided into three regions, and, depending on the
region to which the load belongs, we obtained either
the absence of quasi-Rayleigh waves near the cavity or
the presence of one wave or two waves. In the latter
case, the analysis of the hyperbolas showed that the
choice of the point through which the dispersion curve
of one of the waves passes imposes limitations on the
dispersion properties of the other wave. To illustrate
the aforementioned results, we considered several
models of the impedance load. For example, for the
load represented by a fluid filling the cylindrical cavity,
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we obtained the well-known dispersion equation for
Stoneley waves in such a cavity [3]. We also studied the
behavior of quasi-Rayleigh waves for the load model in
the form of a cut layer on the cavity surface. The results
of our studies can be used in the design of devices for
controlling the properties of quasi-Rayleigh waves in
systems with cylindrical geometry (pipelines, bore-
holes, borehole instruments, etc.).

APPENDIX A
THE IMPEDANCE MATRIX OF THE MEDIUM

Here, we determine the form of the impedance
matrix of the medium for potentials (6) and (7). By

2
5 = NA = 2pciile™ Ky(kBr)[1-€7/2]+

~iB, K, (kBr)

Expressing A through # with the use of Eq. (A.1) and
substituting the result in Eq. (A.2), we obtain the linear

—ikz
—1 e

BZKIIEkBlr) B KO(kBtr) K(kBtr)
r kr
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definition, this matrix Z(© is determined by formula (9)
and determines the linear relation between the stress
and displacement vectors [8]. According to Eq. (8),

the displacement vector # linearly depends on the
vector A:
N ( BiKi(KBir) iK\(kB.r)

j = TA. (A.D
~iKy(kBr) B Ky(kB,r)

The dependence of the stress vector 5" on 4 islinear

and well known (see, e.g., [3]):

A. (A.2)
K (kBr)[1-87/2]

relation between the stress vector and the vector «:
& = NT '%. The matrix T! has the form

(A.3)

kK, (kBir) K, (kB,r)[B,B.F(B,) - F(B))]

Now, using Eq. (9), we obtain the impedance matrix of
the medium Z© in the form

x,A& %) —ix, (& %) j , (A4)
ixrz(a’ X) xzz(a’ X)

where the functions x(&, y) are determined by
Egs. (11)—(13). Note that the impedance matrix of
the medium proved to be Hermitian.

Zz” = NT' = ipct(

APPENDIX B

THE CONDITIONS
OF SIMULTANEOUS PROPAGATION
OF TWO QUASI-RAYLEIGH WAVES

As it was shown above, there exists a region of
impedances X, and X, (e.g., regions III in Figs. 1 and
2) such that the choice of the impedance within it
leads to the simultaneous propagation of two quasi-
Rayleigh waves. From Eq. (24), it is evident that the
characteristics of these waves do not intersect. Thus,
the dimensionless velocity & of one of the waves (this
wave is indicated by the index (F) in subsequent calcu-
lations) with at any frequencies exceed the velocity of
the other wave (indicated by the index (S)). Below, we
will show that, knowing the properties of the faster
wave, we can determine certain limitations for the
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( B.K(kB,r) —iK,(kByr) j
iKy(kByr) B, K\(kByr)

properties of the other wave. We assume that the load
is given by the impedance matrix of type (17) with
X,,= 0. In this case, the dispersion equation of the
quasi-Rayleigh wave is given by Eq. (24), which
describes the hyperbolas in the (X,,, X ) plane. If two
quasi-Rayleigh waves are present, their hyperbolas
may intersect or touch each other. Let us consider the
case in which two hyperbolas have one common point

X, e X ), i.e.,are tangent to one another. In Eq. (24),
for each of the hyperbolas for the (F) and (S) waves, we

express X;z as follows:

(F) S

Xzz — C(F);(S)(XC +X(F) (S)) (Bl)

The derivative dX,/dX,, at the tangency point for each
of the hyperbolas is given by the expression

— _C(F),(S)(XC +x(F) (S))

(dX,/dX,,),

Using Egs. (B.1) and (B.2), we express the condition
that the hyperbolas are tangential to each other at the

(B.2)

point (X, zz) in the form

rro

WD+ ) = (P xO)xP -x9). (B.3)
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Xﬁl
Fig. 4. Dispersion characteristic described by Eq. (B.5)
(curve 1) and the dispersion curves of (.S) waves (the dotted
lines) for different load impedances allowing the existence
of two quasi-Rayleigh waves.

This means that, if we know the dispersion charac-
teristic of one wave, e.g., the (F) wave, we can deter-
mine the limitation on the dispersion properties of the
other wave. Such a condition arises as a result of sub-

stituting the corresponding coefficients xff) and P in
Eq. (B.3). Let us consider the two cases described
above. In the first of them, the dispersion curve of the
(F) wave reaches the value £V = 1 at y© = y'. Substi-
tuting these values in Eq. (24), we obtain a hyperbola
in the (X,,, X,) plane, and, substituting the values
E® = ¢, and ¥® = y', we obtain the hyperbola corre-
sponding to the (S) wave. The value of &, is maximal, if
the hyperbolas of the two waves are tangential to each
other. Substituting &P, £, and %' in Eq. (B.3), we obtain
the equation that implicitly depends on &, at ¥ = "

(1+ J2Eo 1)) = Qe + %, (80 1))
X (B K (1 BV Ko (B + xa(Eer 1))

The value of ., obtained from this equation is the max-
imal possible velocity of the (S) wave at the frequency
o' = ¢/'/a and at any impedance load for which ®' is
the critical frequency of the (F) wave.

In the second case, we assume that £ = &' at
1P — 0. For the (S) wave, the maximal value of 3
at &' is y.. The hyperbola obtained for the (F) wave
from Eq. (24) for the point §) = E', ¥ — oo touches
with its right-hand branch the hyperbola that corre-
sponds to the point £ = &',y = y_. For the values of
v and P at &', Eq. (B.3) has the form

[(2—&')—2[5}13; + JEE XC)JL
E(1-PBp) | B4

= [—,_é'—, +xzz(EJ'a Xc)} [% + xrr(&'a Xc)] ’
B, -B

t ! !
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where B; and B, are the values of the corresponding

parameters for &'. From this equation, by numerical
methods, we can determine y,. and ®,. The latter is the
maximal frequency value at which the slower wave can
propagate with the velocity &' under the condition that
the (F) wave propagates with this velocity at y ) — oo,

Now, let us determine the properties of the (S) wave
if we know that the dispersion curve of the (F) wave
reaches the value £ = 1 at y — o (such an (F)
wave will propagate only on the plane with the shear
wave velocity). As was shown above, the hyperbola
lying in the (X,,, X.,) plane and corresponding to &%
and y? is the limiting one for all the possible hyperbo-
las. For the values &9 and y?, Eq. (B.4) takes the form

()2 (et , (S
(1+NC7) =x (B, +x

v4 rr J*

(B.5)

In the (&, y) plane, it determines the dispersion curve
(curve 7 in Fig. 5). If the diagonal load impedance
matrix is such that two quasi-Rayleigh waves arise, the
dispersion characteristic of one of them will always lie
below this curve, irrespective of the specific values of
the load impedance matrix elements. The curves rep-
resented by the dotted lines in Fig. 5 show different
dispersion characteristics for such slower quasi-Ray-
leigh waves corresponding to different values of the
load impedance matrix elements. One can see that
curve [ is the envelope of the entire series of these dis-
persion characteristics. In a similar way, it is always
possible to determine the corresponding envelope for
the (S) waves in the case in which the dispersion curve
of the (F) wave passes through a certain point (&', x).
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