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A b s t ra c t— The effect of a surface impedance load on the properties of axisymmetric quasi-Rayleigh waves 
propagating along the boundaries of a cylindrical cavity is investigated. By solving the problem by means of 
the impedance method, a dispersion equation for these waves is obtained. It is shown that the equation can 
be represented as the condition that the determinant of the sum of impedance matrices of the load and the 
medium is zero. Analysis of this equation allows one to investigate the effect of the surface load on the behav­
ior of quasi-Rayleigh waves and on their critical frequencies. The conditions that should be met by the imped­
ance load for quasi-Rayleigh waves to be absent near the cavity or for one or two such waves to exist are deter­
mined. The choice of the load is specified for the propagating quasi-Rayleigh wave to possess preset disper­
sion properties. The conclusions drawn on the basis of this study are illustrated by several examples of load 
models that can be implemented in practice.
D O I :  10.1134/S1063771010040032

S u r f a c e  w a v e s  i n  e l a s t i c  i s o t r o p i c  m e d i a  h a v e  b e e n  

t h e  s u b j e c t  o f  n u m e r o u s  p u b l i c a t i o n s .  R e v i e w s  

d e v o t e d  t o  c l a s s i f i c a t i o n  a n d  p r a c t i c a l  a p p l i c a t i o n  o f  

s u c h  w a v e s  c a n  b e  f o u n d  i n ,  e . g . ,  [ 1 ,  2 ] .  A n  i m p o r t a n t  

c l a s s  o f  s u r f a c e  w a v e s  i s  f o r m e d  b y  t h e  R a y l e i g h - t y p e  

w a v e s  p r o p a g a t i n g  a l o n g  p l a n e  o r  c u r v e d  b o u n d a r i e s .

F o r  e x a m p l e ,  B i o t  [ 3 ]  o b t a i n e d  t h e  d i s p e r s i o n  c h a r a c ­

t e r i s t i c s  o f  a x i s y m m e t r i c  q u a s i - R a y l e i g h  w a v e s  a n d  

S t o n e l e y  w a v e s  n e a r  a  c y l i n d r i c a l  c a v i t y .  T h e  b e h a v i o r  

o f  w a v e s  w i t h  a  m o r e  c o m p l e x  s y m m e t r y  i n  t h e  h i g h -  

f r e q u e n c y  a p p r o x i m a t i o n  w a s  c o n s i d e r e d  i n  [ 1 ,  4 ] .  I t  

w a s  s h o w n  t h a t  t h e  p h a s e  a n d  g r o u p  v e l o c i t i e s  o f  t h e s e  

w a v e s  d e p e n d  o n  t h e  c u r v a t u r e  r a d i u s  o f  t h e  s u r f a c e .

T h e  p r o b l e m  o f  d e s c r i b i n g  t h e  q u a s i - R a y l e i g h  w a v e s  a t  

a  p l a n e  b o u n d a r y  o f  a n  i s o t r o p i c  h a l f - s p a c e  w i t h  a  t w o -  

c o m p o n e n t  s u r f a c e  i m p e d a n c e  l o a d ,  a s  w e l l  a s  t h e  

p r o b l e m  o f  d e t e r m i n i n g  t h e i r  d i s p e r s i o n  c h a r a c t e r i s ­

t i c s ,  w a s  s t u d i e d  i n  [ 5 ,  6 ] .  I n  t h e s e  p u b l i c a t i o n s ,  t h e  

l o a d  w a s  r e p r e s e n t e d  b y  a  d i a g o n a l  i m p e d a n c e  m a t r i x  

d e s c r i b i n g  t h e  l i n e a r  r e l a t i o n  b e t w e e n  t h e  s t r e s s  a n d  

v e l o c i t y  v e c t o r s .  P u b l i c a t i o n s  [ 5 — 8 ]  a r e  e x a m p l e s  o f  

u s i n g  t h e  i m p e d a n c e  m e t h o d  f o r  d e t e r m i n i n g  t h e  

p r o p e r t i e s  o f  d i f f e r e n t  t y p e s  o f  w a v e s  u n d e r  s p e c i f i c  

t y p e s  o f  l o a d s  ( e . g . ,  c r a c k e d  o r  i n h o m o g e n e o u s  l a y e r e d  

m e d i a ) .

I n  t h e  p r e s e n t  p a p e r ,  w e  s t u d y  t h e  p r o p e r t i e s  o f  a x i -  

s y m m e t r i c  m o d e s  n e a r  a n  i n f i n i t e  c y l i n d r i c a l  c a v i t y  i n  

a n  e l a s t i c  m e d i u m  t h e  s u r f a c e  o f  w h i c h  i s  s u b j e c t e d  t o  

a n  i m p e d a n c e  l o a d .  T h e  l a t t e r  i s  u n i f o r m l y  d i s t r i b u t e d  

a n d  a c t s  l o c a l l y .  T h e  r a d i a l  a n d  t a n g e n t i a l  s t r e s s e s

c a u s e d  b y  t h i s  l o a d  d e p e n d  o n  e a c h  o f  t h e  d i s p l a c e ­

m e n t  c o m p o n e n t s  ( n o r m a l  a n d  t a n g e n t i a l  o n e s ) .  T h e  

l o a d  i m p e d a n c e  m a t r i x  i s  a s s u m e d  t o  b e  H e r m i t i a n .

T h e  d i s p e r s i o n  p r o p e r t i e s  o f  q u a s i - R a y l e i g h  w a v e s  

n e a r  a  c y l i n d r i c a l  c a v i t y  i n  t h e  a b s e n c e  o f  t h e  i m p e d ­

a n c e  l o a d  a t  t h e  b o u n d a r y  a r e  w e l l  k n o w n  [ 3 ] .  W e  

b r i e f l y  d e s c r i b e  t h e  m e t h o d  o f  t h e i r  d e t e r m i n a t i o n ,  

w h i c h  a l l o w s  u s  t o  g i v e  a  n a t u r a l  i n t e r p r e t a t i o n  o f  t h e  

s o l u t i o n  t o  t h e  p r o b l e m  f o r m u l a t e d  i n  t h e  p r e s e n t  

p a p e r .  L e t  u s  c o n s i d e r  h a r m o n i c  w a v e s  w i t h  a  f r e ­

q u e n c y  ю  ( t h e  f a c t o r  e - m t  i s  o m i t t e d  b e l o w  f o r  b r e v i t y )  

t h a t  p r o p a g a t e  n e a r  a  c a v i t y  w i t h  a  r a d i u s  a . T h e  e l a s t i c  

m e d i u m  i s  c h a r a c t e r i z e d  b y  t h e  L a m e  c o n s t a n t s  X a n d  

p  a n d  b y  t h e  d e n s i t y  p .  T h e  w a v e  n u m b e r  a n d  t h e  

v e l o c i t y  o f  l o n g i t u d i n a l  w a v e s  a r e  k t  =  ю / c  a n d  c t  =

V ( X  +  2  p ) / p  , r e s p e c t i v e l y .  F o r  s h e a r  w a v e s ,  t h e  c o r r e ­

s p o n d i n g  q u a n t i t i e s  a r e  k t  =  ю/ c t  a n d  c t  =  J p / p  . T a k ­

i n g  i n t o  a c c o u n t  t h e  g e o m e t r y  o f  t h e  p r o b l e m ,  i t  i s  

c o n v e n i e n t  t o  u s e  t h e  c y l i n d r i c a l  c o o r d i n a t e  s y s t e m  

( r ,  0 ,  z )  w i t h  t h e  o r i g i n  o f  c o o r d i n a t e s  a t  t h e  a x i s  o f  t h e  

c a v i t y .  I t  i s  k n o w n  t h a t  t h e  d i s p l a c e m e n t  v e c t o r  c a n  

a l w a y s  b e  r e p r e s e n t e d  a s  [ 9 ]

u ( u r , u e , u z ) =  d i v ф  +  c u r l y ,

w h e r e  ф  i s  t h e  s c a l a r  p o t e n t i a l  a n d  y  =  ( y r , y 0 , y z )  i s  

t h e  v e c t o r  p o t e n t i a l .  S i n c e ,  i n  t h e  a x i s y m m e t r i c  c a s e ,  

t h e  f o r m  o f  t h e  s o l u t i o n s  d o e s  n o t  d e p e n d  o n  t h e  a n g l e  

0 ,  t h e  a z i m u t h  d i s p l a c e m e n t  ue  a n d  t h e  d e r i v a t i v e s  

d y r/ d0 a n d  d y z / d0 i n v o l v e d  i n  t h e  e x p r e s s i o n s  f o r  ur
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and uz are zero. As a result, the displacem ent vector 
com ponents take the form

ur _ fH— u
d r d z ’ z <Эф + d— + —

dz d r r  ’
u 0 =  0 ,  ( 1 )

w here — = —e. T he wave equations describing axisym- 
m etric waves in  an  elastic m edium  have the form  [3]

д 2 ф  +  1 < Э ф  +  < 9 j -

d r2 r  d r d z 2
■k] ф, (2)

d2— + I d — -  v- + d-2— 
d r  r d r r2 d z 2

2k t —. (3)

A ccording to the H ooke law, the norm al and tan ­
gential stresses are expressed through the displace­
m en t vector com ponents as

CT(0) =  2 Ц +  x ( S j U u  +  u -  +  S » , ) ,

d r  v d  r  r  d z У

CT(0)
rz

( d ur d u 7
4fc +  d -

We introduce the stress vector ct(0) =  ( ct̂ ,  ) T.
Then, for the free boundary, the following condition  is 
valid:

CT(0) = 0 at r = a . (4)

We take into account tha t the wave o f interest, w hich 
propagates along the surface, attenuates w hen it p en e­
trates into the elastic m edium . This m eans that

ф, — — ► 0 at r — ► да. (5)

Equations (2) and (3) and condition  (5) are satisfied by 
the potentials

ф = Аф K)( kp ,r) e kz, (6 )

— = Av K  ( k  Р,г) e kz. (7)

H ere, k  is the wave num ber o f the quasi-Rayleigh 
wave; K0 and K 1 are zero -order and first-order m od i­
fied Bessel functions o f the second kind, respectively; 
and Аф and Av are arbitrary constants. In  Eqs. (6 ) and 
(7), we in troduced the dim ensionless param eters p; =

J \  -  Z k ] / k 2 and pt =  У Г - ! 2 , w here Z =  k / k  =  c /c t 
is a dim ensionless quantity  identical to  the ratio o f the 
Rayleigh wave velocity c to the shear wave velocity ct. 
We note th a t an  undam ped quasi-Rayleigh wave can 
exist a t a free boundary only w hen p; and pt are real, 
w hich corresponds to Z < 1. Substituting potentials (6 )
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and (7) in  Eqs. (1), we obtain the displacem ent vector 
u in  the form

u
(  \  

ur

V uz '

(
= - k e ikz в К (  k  p,r) K 1( k $tr)

\
A .  ( 8 )

V - i K (k P,r) P,K0(k e tr) У

Here, we used the no ta tion  A  =  (Аф, Av). We in troduce 
the elastic im pedance m atrix o f the m edium  Z (0) 

determ ining the linear relation between the stress CT(0) 
and velocity (—iro u ) vectors in  the absence o f the 
im pedance load at the boundary [8 ]:

ct(0)   1гГО7(0)77 zq\ct = —i ro Z  u . (9)

As is show n below in  Appendix A, the m atrix Z (0) for 
potentials (6 ) and (7), w hich describe an  undam ped 
quasi-Rayleigh wave, has the following form  at the 
boundary o f the cavity:

Z (0) 

= i P c t

( Z , x ) =  ip  c,x(0) ( Z , x )

Xr r (Z, X ) —ХК( ^  X )
V K z ^  X ) Xz z (Z > X ) У

(10)
w here the dim ensionless elem ents Xy o f the m atrix X(0) 
have the form

X r r ( Z, X ) Е . Р Д Ю Т Р , )  2
ргР Д Р , ) - / Ш  -X,

(11)
Xzz( Z  X )

Xrz( Z, X )

ZP/
РгР Д Р , ) - Д Р , - , 

+ 2
Ш Р , ) - Д Р г- Z .

( 12)

(13)

Here, we in troduced the function F (s) =
K0(sx/Z )/K i(sx/Z) and the dim ensionless frequency 
X =  k ta. Boundary condition  (4) m eans that, a t r  =  a, 
Eq. (9) becom es hom ogeneous. In  this case, it has a 
nontrivial solution only w hen the following equation is 
satisfied:

d e tZ (0) =  0 o r detX (0) =  0. (14)

Using Eqs. (11)—(13), we represent this equation in  
the form

(2 -  Z)2F (P ,) -  4 p ;PtF(Pt) -  2 p,Z3/X = 0. (15)

It describes the dispersion properties o f a quasi-R ay­
leigh wave near a cylindrical cavity and coincides w ith 
the equation obtained by Biot [3].

L et us proceed to considering the problem  stated 
above, i.e., to the case w here an  im pedance load is 
present at the boundary. T he load causes additional

surface stresses described by the vector CT(Z) =  

( ct̂ )) T. T he im pedance m atrix  o f such a load
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Z (L) describes the linear relation between the stress 

a (L) and velocity (—/ю u ) vectors:

a (L) = - m Z ^ L) u . (16)

For convenience, we in troduce the m atrix X(L) and the 
quantities Xy in  the following way:

0Г / 2 2w here p, =  ^1 -  / k S is a constan t depending on
the elastic properties o f the m edium . We note that 
loads can  exist w ith  x — ► да, for w hich the propaga­
tion  o f quasi-Rayleigh waves is impossible for any fre­
quencies, except for the case o f waves on  a plane. This 
follows from  the analysis o f  Eq. (22) in  the lim it 
Xc r ------"  да:

X(L) = ( i pc, )- 1Z ( L), X(L) = (  К  - iXrz ^
V iXrz X zz J

(17)

Because o f the linearity o f the relations between 
stresses and velocities in  Eqs. (9) and (16), the result­

ing stress vector a F at the boundary o f the cavity is 
expressed as [5]

a (F) =(0) , - ( L)a  + a (18)

X r r (X z z  -  РГ) = (X r z  +  1 )2 , (23)

w hich gives the equation for determ ining this kind o f 
load.

N ow  let us determ ine the type o f load tha t provides 
preset properties o f quasi-Rayleigh waves. For illustra­
tion  and for convenience, we consider the diagonal 
im pedance m atrices (Xrz =  0). In  this case, Eq. (21) 
can  be represented in  the form

[X r r  +  x r r a , x ) ] [ X z z  +  Xz z t t , x)] =  Z&  x ) , (24)
For the boundary o f the cavity, the following boundary 
condition  is valid:

a (F) =  0 at r  =  a. (19)

Substituting stresses (9) and (16) in  Eq. (18) and 
applying boundary condition  (19), we obtain a hom o­
geneous equation for determ ining the vector u . The 
condition  o f existence o f a nontrivial solution to this 
equation leads to a dispersion equation for quasi-R ay­
leigh waves at the boundary w ith the im pedance load:

d e t(Z (L) + Z (0)) = 0 or d e t(X(L) + X(0)) = 0. (20)

In  view o f Eqs. (10) and (17), we represent it in  the 
form

[ X r r  +  X r r Ĉ X)][ X zz  +  X z z (  ^ ’ X ) ] (21)
=  [ X r z  +  X r z t t , X ) ] 2 .

Let us consider the lim iting cases. In  the absence o f 
the load at the boundary, i.e., X(L) =  0, Eq. (20) takes 
the form  o f Eq. (14). In  the lim it x — ► да, for the diag­
onal im pedance m atrix  o f the load (Xrz =  0), Eq. (21) 
transform s to the dispersion equation for a quasi-R ay­
leigh wave on  a plane in  the presence o f a tw o-com po­
nen t im pedance load, w hich was derived in  [5].

It is well known tha t a quasi-Rayleigh wave near a 
cylindrical cavity has critical frequencies юст =  c,xcr/ a  
such tha t a wave w ith a frequency lower th an  юст can ­
no t propagate in  it. Let us consider the dependence o f 
xcr on  the im pedance load. T he frequency is critical if  
the velocity o f the quasi-Rayleigh wave for it is iden ti­
cal to  the velocity o f shear waves in  the elastic m edium ,
i.e., a t £, =  1. Substituting this value in  Eq. (21), we 
obtain

(Xrr -  2 x-r1)(Xzz -  PCr̂ 1( x crPCr)< ( x crPCr))

= (Xrz + 1 )2 ,
(22)

w here Z(%, x) =  [Xrz(%, x ) ]2 . Evidently, a t fixed values 
o f £, and x, it describes a hyperbola in  the (X„, Xzz) 
plane. Thus, for any po in t (£,', x ') (or any region in  the 
(£,, x) plane), there always is a hyperbola (or region, 
respectively) in  the im pedance plane (X rr, Xzz) such 
that, in  the presence o f a load belonging to  this hyper­
bola (or region), the dispersion curve o f the quasi- 
Rayleigh wave passes through this point (or region in  
the (£,, x) plane). In  [5], sim ilar hyperbolas were co n ­
sidered for the case o f quasi-Rayleigh waves on a plane 
boundary. For example, we assum e tha t the point 
(£,', x ') belongs to the dispersion curve o f the quasi- 
Rayleigh wave in  the absence o f the surface load; i.e., 
it is the solution to Eq. (15). In  this case, Eq. (24) will 
describe a hyperbola lying in  the (X rr, Xzz) plane and 
passing through the po in t (0 , 0 ) corresponding to zero 
load; in  this case, Eq. (24) takes the form

(Xrr/Xrr(^, x ) + 1 )(Xzz/Xzz(^  x ) + 1 ) = 1 .

Let us consider the behavior o f  the hyperbolas 
described by Eq. (24) and their dependence on  the 
choice o fth e  po in t (£,', x '). First, we consider the effect 
o f the quantity  £,' e  (0, 1] at a fixed value o f x'. This 
effect is illustrated in  Fig. 1 for the case o f x' =  2.5. 
Hyperbolas 1, 2, and 3  describe the im pedances X„. 
and Xzz a t w hich the characteristics o f quasi-Rayleigh 
waves pass through the points ( 1 , x '), (xc, x ) (where 
£,c =  0.58), and (0.35, x '), respectively. One can  see 
that, as the param eter £,' decreases from  1 to 0 , the co r­
responding hyperbolas at a fixed x' shift rightward and 
upward, beginning from  curve 1 , to the hyperbolas 
w ith Xrr, Xzz — ► да. It should be no ted  that, in  the 
im pedance plane (Xrr, Xzz), three regions are form ed 
(regions I, II, and III in  Fig. 1). For the load belonging 
to region I, w hich lies below the left-hand  b ranch  o f 
hyperbola 1, the propagation o f  a quasi-Rayleigh wave 
w ith a dim ensionless frequency lower th an  x' is im pos­
sible. In  the second region lying between the branches 
o f hyperbola 1, only one quasi-Rayleigh wave propa-
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Fig. 1. Hyperbolas in the (Xrr, Xzz) plane at a fixed value of 
X' = 2.5 and at a  = 0.4 for different values of £,: \  = (1) 1, 
(2) %c, and (3) 0.35.

Fig. 2. Hyperbolas in the (Xrr, Xzz) plane at a fixed value of 
£' = 0.8 and at a  = 0.4 for different values of x: X = (1) ю, 
(2) Xc, and (3) 0.25.

gates, its dispersion curve possessing a certain velocity 
4' e (4c, 1] at x '. Finally, when the load belongs to region III, two surface waves propagate with different velocities 4r and 4° at x '. Hyperbola 2  corresponds to such a value of 4' = 4c at which its left-hand branch touches the right-hand branch of hyperbola 1 . This means that, if Eq. (24) describes the behavior of two quasi-Rayleigh waves and the dimensionless velocity of one of them reaches the value 4r = 1 at x ', then, at any load lying in region III, the other wave at a dimen­sionless frequency x ' will propagate with a velocity
4 ° < 4c.Now, in Eq. (24), we take a fixed value of 4' and consider the effect of the parameter x ' e (0, да) on the behavior of the corresponding hyperbolas in the 
(Xrr, Xzz) plane. This behavior is illustrated in Fig. 2 for 
4' = 0.8. Hyperbolas 1, 2, and 3  describe the imped­ances X„. and Xzz, at which the characteristics of the quasi-Rayleigh wave pass through the points (4', да), (4', xc), where x c = 0.46, and (4', 0.25), respectively. As 
x ' decreases from да to 0, the hyperbolas shift upward and rightward from hyperbola 1 to the values Xrr, 
Xzz—' which correspond to the point (4', 0). As inthe first case, we consider three regions (I, II, and III) in Fig. 2. The branches of hyperbola 1 bound region II, for which only one quasi-Rayleigh wave is possible with the velocity 4'. In the presence of a load belonging to region I (below the left-hand branch of hyperbola 1), the quasi-Rayleigh wave with the velocity 4' does not exist, whereas, in region III, two such waves propagate with different values of y}  and x n at 4'. Hyperbola 2  touches hyperbola 1 at a certain point. The value of x c corresponds to the maximal value of x ' of one of the waves, for which the propagation of two quasi-Ray­leigh waves is possible with the velocity 4'. We note that, as an example, here and below, the Poisson’s ratio of the elastic medium, a , was chosen to be 0.4, which corresponds to such materials as lead or glass. The

method of determining the values of xc and 4c is described below in Appendix B.It is of interest to consider the specific case (4 , x) = (1, да), which corresponds to a quasi-Rayleigh wave propagating over a plane with the velocity of shear waves. The dispersion curve passing through this point is described by Eq. (23). If Xz  = 0, the corresponding equation will describe a hyperbola in the (Xrr, Xzz) plane, which divides this plane into three regions. If we use the load parameters below the left-hand branch of the hyperbola, no quasi-Rayleigh waves can propa­gate, no matter what their frequencies are. For imped­ances lying in the region between the branches of the hyperbola, propagation of one quasi-Rayleigh wave is possible at certain frequencies. If the load belongs to the region above the right-hand branch of the hyper­bola, at certain frequencies we obtain a simultaneous propagation of two quasi-Rayleigh waves. One of them can have a dispersion characteristic passing through any point of the (4 , x ) plane, whereas the dispersion characteristic of the other wave should always lie below the curve described by the equation (see Appendix B)
(1  + T Z ( 4 x ) ) 2 = *„(4 , x )(P  C + %(4> x ))  •As examples, we consider several impedance load models that illustrate their influence on the properties of quasi-Rayleigh waves. The firs model is a cylindrical cavity filled with a nonviscous fluid. The density of the fluid is pf , and the wave number of elastic waves in it is kf. We represent the fluid as an impedance load. For it, in the matrix X(L), the only nonzero element is Xn.. The acoustic impedance Zf  of the fluid is identical to the ratio of the normal pressure in the fluid to the radial velocity [9]. Taking into account the definition of the matrix X(L), we determine the element X ^

X  _ 4 p / p̂ a a) 
rr p a /1 ( k a a ) ’ (25)
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Fig. 3. Dispersion characteristics of quasi-Rayleigh waves 
in the presence of impedance loads given by Eq. (32) at a  = 
0.4 for different values of l/a and g: l/a = (1) 0, (2, 3) 0.05, 
and (4) 0.1; g = (2) 1 and (3, 4) 3.

w here a  =  1 -  £,2k f / k ] . Here, I 0 and I 1 are the zero-
and first-order m odified Bessel functions o f the first 
kind, respectively. Substituting o f Eq. (25) in  Eq. (20) 
yields the dispersion equation

(2  -  ^ )2F (Pi) -  4 PiР Л Р , )

-  Pi 2
x

e P/ p ^ XA ) ~ 
^ a PI 1( a X/e )

=  0 .

In  the fluid-filled cavity, w hen k  > kf , this equation 
describes the Stoneley waves m onotonically  a ttenua t­
ing along the radius in  the direction from  the boundary 
into the fluid or into the solid; w hen k  < kf , it describes 
the m odes “oscillating” along the radius in  the fluid 
and m onotonically  attenuating in  the solid. T he dis­
persion equations for these waves have been derived 
and analyzed in  m any publications, e.g., in  [3]. The 
above consideration describes the alternative m ethod 
o f their derivation, as com pared to the m ethod used in 
the aforem entioned publications.

Let us consider ano ther load model. We assum e 
tha t the surface o f the solid is covered w ith  a th in  
cracked layer w ith  the density p (L) and height l, the la t­
te r being small com pared to  the shear wavelength in 
the elastic m edium : l <  Xt. T he characteristic trans­
verse size d  o f the cuts o f the m edium  in this layer is 
assum ed to be small: d  <  \ t. In  addition, we assum e 
tha t the shear waves’ velocities in  the layer and in  the 
m edium  are identical. T he load im pedance m atrix  has 
the form  [5, 6 ]

X ( L )  =  g
Q  0

^ 0 q j
(26)

w here Q  =  k tl and g  =  p (L)/p . To estim ate the limits o f 
applicability o f this m odel, we assum e tha t the height

o f the layer is m uch  sm aller th an  bo th  the radius o f  the 
cavity and the wavelength: l <  a and l <  X t. Then, m ul­
tiplying bo th  inequalities by k t, we obtain the applica­
bility conditions in  the form  Q  <§ x and Q  <§ 2я .

Figure 3 shows the dependences o f  the dim ension­
less velocity e on the dim ensionless quantity  x -1  for 
quasi-Rayleigh waves in  the case o f the load described 
by Eq. (26) for different values o f l/a  (o r the identical 
quantity  Q / x ) and g. In  the case o f Q  =  0, w hich co r­
responds to  the absence o f load (curve 1 ), the disper­
sion characteristic o f the quasi-Rayleigh wave is 
described by Eq. (15). Curves 2  and 3  correspond to 
Q / x =  l/a  =  0.05 and g  =  1 and 3, respectively. Curve 4 
corresponds to l/a  =  0.1 and g  =  3. One can  see that, 
w hen the param eter l/a  or g  increases, the effect o f  the 
load on the properties o f  quasi-Rayleigh waves grows. 
For example, on  the surface o f the cavity, two quasi- 
Rayleigh waves can  exist and, the greater the ratio l/a , 
the sm aller the critical frequency o f each o f these 
waves. A ccording to  the conditions o f applicability 
form ulated above for the m odel under consideration, 
a t Q  Ф 0, the dispersion curves m ost adequately predict 
the behavior o f quasi-Rayleigh waves in  the low -fre­
quency range, i.e., a t large values o f x - 1 .

Thus, in this paper, we considered the properties of 
quasi-Rayleigh waves near a cylindrical cavity in  the 
presence o f a surface im pedance load. By m eans o f the 
im pedance m ethod, we derived the dispersion equa­
tion  describing the behavior o f such waves and showed 
tha t this equation can  be represented by the condition 
tha t the determ inant o f the sum  o f the im pedance 
m atrices o f  the load and the m edium  is zero. In  various 
lim iting cases, this equation takes the forms o f well- 
know n results [3, 5]. F urther analysis o f this equation 
allowed us to determ ine the dependence o f the critical 
frequency o f the quasi-Rayleigh wave on  the cavity 
boundary load. In  particular, we showed that there 
exists a load such tha t it permits the presence o f a 
quasi- Rayleigh wave only in  the case o f a p lane bound­
ary. We also considered the problem  o f choosing the 
tw o-com ponent im pedance load so th a t the dispersion 
curve o f the quasi-Rayleigh wave passed through a 
given po in t (£,', x ). We determ ined the corresponding 
condition  for this load. It describes hyperbolas in the 
(X„., Xzz)  plane. T he influence o f the chosen po in t 
(£,', x ) on  the position  o f such a hyperbola was an a­
lyzed in  detail. It was shown tha t the im pedance plane 
is divided into th ree regions, and, depending on the 
region to w hich the load belongs, we obtained either 
the absence o f quasi-Rayleigh waves near the cavity or 
the presence o f one wave or two waves. In  the latter 
case, the analysis o f the hyperbolas showed tha t the 
choice o f the po in t through w hich the dispersion curve 
o f one o f the waves passes imposes lim itations on the 
dispersion properties o f the o ther wave. To illustrate 
the aforem entioned results, we considered several 
m odels o f the im pedance load. For example, for the 
load represented by a fluid filling the cylindrical cavity,
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we obtained the w ell-know n dispersion equation for 
Stoneley waves in  such a cavity [3]. We also studied the 
behavior o f quasi-Rayleigh waves for the load m odel in  
the form  o f a cu t layer on  the cavity surface. T he results 
o f  our studies can  be used in  the design o f devices for 
controlling the properties o f quasi-Rayleigh waves in  
systems w ith  cylindrical geom etry (pipelines, bo re­
holes, borehole instrum ents, etc.).

A P P E N D IX  A
T H E  IM P E D A N C E  M ATRIX O F T H E  M E D IU M

H ere, we determ ine the form  o f the im pedance 
m atrix  o f the m edium  for potentials (6 ) and (7). By

definition, this m atrix Z (0) is determ ined by formula (9) 
and determ ines the linear relation between the stress 
and displacem ent vectors [8 ]. A ccording to Eq. (8 ), 
the displacem ent vector u linearly depends on the 

vector A :

u = - k e ikz P K 1(kP,r) iK.1 (kP,r)
V - i K 0( kp,r) P K ,(k e ,r )  )

A  = TA. (A.1)

T he dependence o f the stress vector a (0) on A  is linear 
and well known (see, e.g., [3]):

a  = NA = 2pc2 k2 e kz
К , (k p,r)[ 1 -  X / 2 ] + i pK o(k Ptr ) + iK i( k Ptr)

- i P K  ( k P r )

1 i t  o v I t /  1kr  kr

K i(kP tr)[ 1 -  X / 2 ] )

(A.2)

Expressing A  through u w ith  the use o f Eq. (A.1) and relation between the stress vector and the vector u : 
substituting the result in  Eq. (A.2), we obtain the linear a  =  NT -1  u . T he m atrix T -1  has the form

T-1
-ikz

k K (k P r )K 1(kPtr)[P ,P F ( P t) - )]
'  PtKo(kPtr) - K (kPtr) " 
I  iKo(k P,r) PK 1(kP,r) )

(A.3)

Now, using Eq. (9), we obtain the im pedance m atrix o f 
the m edium  Z (0) in  the form

Z (0) = N T -1 Ф ct x rr( ^, X ) - i x rz( ^  X)''  

V ixrz( ^, X ) x zz( >̂ X ) )
, (A.4)

w here the functions x ij(Z!, x) are determ ined by 
Eqs. (1 1 )-(1 3 ). N ote  tha t the im pedance m atrix  o f 
the m edium  proved to be Herm itian.

A P P E N D IX  B
T H E  C O N D IT IO N S  

O F SIM U LTA N EO U S PRO PAG ATION 
O F TWO QUA SI-RA Y LEIG H  WAVES

As it was shown above, there exists a region o f 
im pedances X tr and Xzz (e.g., regions III in  Figs. 1 and 
2 ) such tha t the choice o f the im pedance w ith in  it 
leads to the sim ultaneous propagation o f two quasi- 
Rayleigh waves. From  Eq. (24), it is evident tha t the 
characteristics o f these waves do n o t intersect. Thus, 
the dim ensionless velocity £, o f one o f the waves (this 
wave is indicated by the index (F) in  subsequent calcu­
lations) w ith at any frequencies exceed the velocity o f 
the o ther wave (indicated by the index (S)). Below, we 
will show that, knowing the properties o f the faster 
wave, we can  determ ine certain  lim itations for the

properties o f the o ther wave. We assum e tha t the load 
is given by the im pedance m atrix  o f  type (17) w ith 
X rz =  0. In  this case, the dispersion equation o f the 
quasi-Rayleigh wave is given by Eq. (24), w hich 
describes the hyperbolas in  the (X rr, X zz) plane. If  two 
quasi-Rayleigh waves are present, their hyperbolas 
m ay intersect or touch  each other. Let us consider the 
case in  w hich two hyperbolas have one com m on point

(X r , XZ z ), i.e., are tangent to one another. In  Eq. (24), 
for each o f the hyperbolas for the (F) and (S) waves, we

express x Zz as follows:

x zz  = z (n (  5 ) (X r  + хГ? ’( 5 ) ) -1 -  x Z f ( 5 ). (B .1)

T he derivative dXtt/d X nn a t the tangency po in t for each 
o f the hyperbolas is given by the expression

(dX z z / dX r r ) c  =  - Z(F)’(S )(X r  +  x [ Fr ) A S ) ) 2 . (B .2 )

Using Eqs. (B.1) and (B.2), we express the condition 
tha t the hyperbolas are tangential to each other at the

po in t (X r r , X z ) in  the form

+ 2 с -) 2 = <xF  -  x ;< )(x z?  - х<ея ). (B.3)
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В

(curve 1) and the dispersion curves of (S) waves (the dotted 
lines) for different load impedances allowing the existence 
of two quasi-Rayleigh waves.This means that, if we know the dispersion charac­teristic of one wave, e.g., the (F) wave, we can deter­mine the limitation on the dispersion properties of the other wave. Such a condition arises as a result of sub­stituting the corresponding coefficients x (P  and Z(F) in Eq. (B.3). Let us consider the two cases described above. In the first of them, the dispersion curve of the (F) wave reaches the value B(F) = 1 at x (F) = x '. Substi­tuting these values in Eq. (24), we obtain a hyperbola in the (Xrr, Xzz) plane, and, substituting the values 

B(S) = Bc and x (S) = x ', we obtain the hyperbola corre­sponding to the (S) wave. The value of Bc is maximal, if the hyperbolas of the two waves are tangential to each other. Substituting B(F), B(S), and x ' in Eq. (B.3), we obtain the equation that implicitly depends on Bc at x(S) = x ':

where в’ and в’ are the values of the corresponding parameters for B'. From this equation, by numerical methods, we can determine x c and roc. The latter is the maximal frequency value at which the slower wave can propagate with the velocity B' under the condition that the (F) wave propagates with this velocity at x (F) —► да.Now, let us determine the properties of the (S) wave if we know that the dispersion curve of the (F) wave reaches the value B(F) = 1 at x (F) —►  да (such an (F) wave will propagate only on the plane with the shear wave velocity). As was shown above, the hyperbola lying in the (Xrr, Xzz) plane and corresponding to B(F) and x(F) is the limiting one for all the possible hyperbo­las. For the values B(F) and x (F), Eq. (B.4) takes the form
In the (B, x) plane, it determines the dispersion curve (curve 1 in Fig. 5). If the diagonal load impedance matrix is such that two quasi-Rayleigh waves arise, the dispersion characteristic of one of them will always lie below this curve, irrespective of the specific values of the load impedance matrix elements. The curves rep­resented by the dotted lines in Fig. 5 show different dispersion characteristics for such slower quasi-Ray­leigh waves corresponding to different values of the load impedance matrix elements. One can see that curve 1 is the envelope of the entire series of these dis­persion characteristics. In a similar way, it is always possible to determine the corresponding envelope for the (S) waves in the case in which the dispersion curve of the (F) wave passes through a certain point (B', x ).
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