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Abstract—Phenomena arising in the course of wave propagation in narrow pipes are considered. For nonlin-
ear waves described by the generalized Webster equation, a simplified nonlinear equation is obtained that
allows for low-frequency geometric dispersion causing an asymmetric distortion of the periodic wave profile,
which qualitatively resembles the distortion of a nonlinear wave in a diffracted beam. Tunneling of a wave
through a pipe constriction is investigated. Possible applications of the phenomenon are discussed, and its
relation to the problems of quantum mechanics because of the similarity of the basic equations of the Klein—
Gordon and Schrodinger types is pointed out. The importance of studying the tunneling of nonlinear waves

and broadband signals is indicated.
DOI: 10.1134/81063771010040044

The Webster equation [1—3] describes the propaga-
tion of sound in pipes, horns, concentrators, and other
waveguiding systems with variable cross sections S(x).
Here, x is the coordinate measured along the axis of
the system. This equation is applicable to pipes the
characteristic radius of which is small compared to the
wavelength: #,(x) <€ A. In addition, the cross section
should vary slowly: dr,/dx <€ 1. This means that the
tangent to the function describing the pipe profile y(x)
should make small angles with the x axis [3].

The generalized Webster equation appears in the
problems of intense sound propagation in pipes [4—6].
It is also used for calculating the acoustic field in inho-
mogeneous media in the geometric acoustics approxi-
mation [4, 5], where it plays the role of the transfer
equation represented in ray coordinates. The axis of a
ray tube is the geometric ray calculated from the
eikonal equation, and the function S(x) is the cross
section of the ray tube. We represent this equation in
the form
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Here, p is the sound pressure, ¢ is the velocity of sound,

and p is the density of the medium. Let us introduce a
new function Finstead of the pressure:

p(x, 1) = F(x, 1)/NS(x).

For this function, Eq. (1) takes the form
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With the acoustic nonlinearity being ignored,
Eq. (2) represents the Klein—Gordon equation with the

coefficient depending on the x coordinate. If $1/2(x) is
given by one of the following functions:

2

Csiny(x +x;), Ccosy(x+x,), Csinhy(x+x0),(3)

Ccoshy(x+x;), Cexp[xy(x+xy)]

(where C, x,, and y are constants), linearized equation (2)
takes the form of the conventional Klein—Gordon
equation

2 2
ox~ ¢ or
In this case, the wave acquires a low-frequency disper-

sion described by the law k2 = ©?/c? £ y2. In cases in
which

JS(x) = C, JS(x) = C(x+x,),

i.e., for plane or spherically symmetric waves, the dis-
persion vanishes and the Klein—Gordon equation
takes the form of the conventional wave equation.

Since, in the model described by Eqgs. (1) and (2),
the cross section varies slowly at distances on the order
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Fig. 1. A pipe with a constriction (region 11, 0 < x < d) filled
with a medium that is characterized by the density p; and
the sound velocity c;.

of the wavelength and the nonlinearity is small, the
above equation can be simplified for traveling waves.
Using the slowly varying profile approach (see, e.g.,
[7]), for a wave traveling in the direction of increasing
x coordinate values, Eq. (2) can be reduced to the form

ﬁ[é_F_ ;Fa_q = _;‘f—VS(X)F. (4)
otlox  2p,/S(x) Ot 2.8(x)  dx’

Here, T =t — x/c is the time in the coordinate system
traveling with the wave with the velocity of sound. We
note that the transition to the slowly varying profile
approximation in the initial form of Eq. (1) leads to a
less accurate equation for the sound pressure:

P -y (5)

Equation (5) is equivalent to Eq. (4) with a zero right-
hand side; i.e., it ignores the dispersion. However,
Eq. (5) has a solution (see problem 7.11 in [8]) for any
initial (at x = 0) shape of the wave profile p(x =0, 1) =
Po@(0):

I GO BRI SO
P =D S(x)®[r+c3pp S(x')dx}' (6)
0

At the same time, Eq. (4) can only be solved for some
specific shapes of the pipe cross section S(x) [9]. Solu-
tion (6) describes a wave with identical nonlinear dis-
tortions in the regions of positive and negative pres-
sures, because p(—t) = —p(1). In the presence of dis-
persion in Eq. (4), this symmetry fails. Therefore, if
the initial signal is harmonic, a sawtooth-shaped wave
is formed in the medium with the negative-pressure
half-period being lengthened and smoothed and the
positive-pressure half-period being shortened and
possessing a higher amplitude [9]. Phase shifts arise
between the harmonics, which were absent in solu-
tion (6). A similar behavior is observed for a wave in a
diffracted beam; the diffraction leads to a similar low-
frequency dispersion.
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Thus, the weak dispersion due to the variation of
the pipe cross section gives rise to qualitatively new
effects in the behavior of a nonlinear wave.

Interesting phenomena arise in pipes even in the
simplest case of linear approximation. One of the basic
phenomena is the tunneling effect, which is still not
clearly understood [10]. However, this effect is of great
interest for acoustic and electromagnetic waves, as
well as for waves of other natures. Owing to the analogy
with the Schrodinger equation, the classical results
should also be important for understanding the fine
effects of particle transmission through a potential
barrier in the problems of quantum mechanics.

We consider waves that are harmonic in time. For
such waves, Eq. (2) without the nonlinear term has the
form

LE, (- L0 p - g, (M
dx’ JS(x)  dx’

Let us consider one of the aforementioned (Eq. (3))
particular cases, namely, the case in which Eq. (7)
takes the form of an equation with constant coeffi-
cients and has a simple general solution. Assuming
that

S(x) = Smcoshz[y( —éﬂ, Y = garCCOShJ%n’ 8)

2 d
we reduce Eq. (7) to the form
d’'F

dx’

+[ki=v1F = 0. ©)

This case corresponds to the problem of wave propa-
gation through the pipe constriction (0 < x < d) shown
in Fig. 1. The region 0 < x < d is filled with a medium
with the density p, and sound velocity c,. Outside this
region, the pipe is filled with another medium with the
density p, and sound velocity c¢,.

In Egs. (7)—(9), k;, = ®/c; the constants S, and d
represent two geometric characteristics of the vari-
able-thickness region: the minimal dimensionless area
of the constriction, which is reached at x = d/2, and
the length d of this region.

The wave tunneling regime corresponds to Y2 > kf .
This regime is possible for low frequencies k; <y or

o< &arccoshL, k1a!<2arccoshL =20.
d JS, JS,
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In this case, the complex amplitudes of pressure and
particle velocity in region II corresponding to 0 <x < d
are described by the expressions

1 —pux px
pn = —(Pe" +Pe),
Js

i
k1P1C1A/§

—HX S' X S'
x| P H( +_S>_P H(__ .
L€ K e Y

Here, we used the notation L = A/yz — k% . In the other

two regions, i.e., before the inhomogeneity (x < 0) and
after it (x > d), the fields are given by the formulas

ung =

(10)

Py = Pieik0x+Pre—ik0x’
g ik (L1)
u = (P - pe ™,
PoCo
iky(x — d) 1 iy (x— d)
pm = Pe ’ , U = —Pe ’ ) (12)
PoCo

where the quantities P, P,., and P, are the amplitudes
of the incident, reflected, and transmitted waves.

We assume that $(0) = 5(d) = 1. Using Eq. (8) for
the cross-sectional area, we determine the derivatives
at the boundaries of the inhomogeneity:

ds| = p, 48
dx x=0 dx x=d

b= 2./1 — SmarccoshL.

d S,

= +2b,

m

To calculate the reflection and transmission coeffi-
cients for the wave, it is necessary to impose the conti-
nuity conditions on the pressure p and velocity u fields
at the boundaries of the region 0 <x < d:

ou _ Op , _ __Ldp
ot ox’ kpedx

Then, from Eqgs. (10)—(12), we obtain the following
expressions for the amplitudes:

P+P =P +P, (13)
PP = il%[P+(M—b)—P7(M+b)], (14)
1
Pet+pP e =P, (15)
il%[ge*“d(wb)_P,e“d(u_b)] =P. (16
1

We denote the ratio of the acoustic impedances of the
two media as o0 = (pycy/Picy)-
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A convenient way of solving system of equa-
tions (13)—(16) is as follows. We first eliminate the
reflected wave amplitude from Eqgs. (13) and (14) and
the transmitted wave amplitude from Egs. (15) and
(16). Then, we obtain the system of two equations

P{l+i%(u—b)}+P{l—i%(u+b)} = 2P, (17)
1 1

P+e*“d[1 - it b)}
1 (18)
+ P,e“d[1 +il%(u—b)} - 0.

1

The solution to system of equations (17), (18) has the
form

P, = Z—Pfeﬁ[1 + i_ﬂ(n_é)}
A k

P = —Z—P"e*ﬁ[l —i%m+ 13)},

19
A % (19)

2

A= eﬁ[1 + i%(ﬁ _ Z)T_ e*ﬁ[1 _ il_%(ﬁ + 13)}

Here, the overbar indicates the dimensionless quanti-

ties:
ki = kyd, [i=pd= Ao’ —F,

b = bd = 2¢tanhe.

(20)

Below, for brevity, we omit the overbar in dimension-
less quantities (20). Using Egs. (18) and (19), we can
easily calculate the reflection and transmission coeffi-
cients for the wave:

R=-=
P;

&[1 + %2(“ - b)z} - e“[l + Zij(u + b)z} 1)

1 1

2 2’

e“|:1 + i%(u —b):| ef“[l - il%l(u + b)}

,’M
ky

e“|:1 + il%l(u - b)}2 - e7“|:1 - i%(u + b):|2.

(22)
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Fig. 2. The upper curve SEn) shows the dependence of the
minimal cross section in the inhomogeneity constriction
on the square of the impedance ratio of two media az; it

corresponds to curve / for kd. The lower curve S(m2 ) cor-

responds to kd = 0 (straight line 2). The range of minimal
cross section variation within which a total transmission is
possible for two frequency values and an almost total trans-
mission in the frequency band between the two maxima of
the transmission coefficient is indicated by the hatched
area.

Expressions (21) and (22) satisfy the law of conserva-
tion of energy:

IR +17* = 1.

In addition, since the numerator of Eq. (21) is purely
real while the numerator of Eq. (22) is purely imagi-
nary, the phases of the reflected and transmitted waves
are related to each other:

(23)

O,- D, = —

(i
5

Indeed, from calculations, we obtain the expres-
sions

2
LRI Hl +%5 0 —b)ﬂ
k

1

2 2 2
—e“[l +%(u+b)z}} T = 165y,
1 1

(24)

2
A" = 16% 1’
ki

2
+ {e“[l + Zij(u - b)z} - e“[l + ‘]’g(p + b)z}} ,

which allow us to verify the fulfillment of conservation
law (23). The phases of the reflection and transmission
coefficients are determined by the formulas

A = |Alexp(i®),
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® = arctan| 2<%
1

e'(u=>b)+e"(u+bh)
e“[l - ‘ij(u - b)z} - e“{l - ‘lj(p + b)z}
k k

1 1

X

’

R = |Rlexp(=i®), T = |Tlexp(—i® +m/2).

It is of interest to consider the case in which the
reflected wave is absent (a total transmission), which,
according to Eq. (21), is possible under the condition

(25)

Using Egs. (20), we represent condition (25) in the

form
exp(2449° — k)
2
_ kf + oaz(A/4(p2 - kf + 2¢ptanh@)
.
ki +a’(J40° -k} — 2@tanh @)

Here, for brevity, we used the notation ¢(S,) =
arccosh ( S;,l/ 2) .

It should be noted that, at oo = 1, i.e., when the
acoustic impedances of the two media are identical,
condition (26) takes the form

tanh (449’ k1) _ tanh(2¢)
A/4(p2 - kf 20

Equation (27) has a single solution k; = 0, which cor-
responds to the pipe constriction characterized by
zero wave thickness (or a wave with zero frequency).
A nontrivial root only appears when the impedances
of the media are different (o # 1).

At fixed parameters of the media (a fixed value of
o > 1), Eq. (26) determines the implicit dependence of

(26)

27)

kf on ¢. The root of this equation determines the

dependence of the frequency corresponding to the
total transmission of the wave on the geometric
parameters of the pipe constriction region, 5, and d.

The results of analyzing Eq. (26) are presented in

Fig. 2. The upper curve anl ) represents the depen-

dence of the minimal cross section of the constriction
on the square of the impedance ratio of the two media,
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o?. This dependence monotonically decreases from
unity (at o = 1) to a value of 0.305, which is deter-
mined by the condition

S = cosh_Q(p*, 0,~12, o.tanho, = 1.

Choosing a certain value of o and the corresponding

.. . 1
minimal cross section Sf,,) , we use curve [ to deter-
mine the dimensionless frequency k; = k,d. The sec-

2 . . .
ond curve S(m) describes a monotonically decreasing

(from unity to zero) function of a?; these values of the
minimal cross section correspond to the zero fre-

quency value: k; = k,d = 0 (straight line 2).

The hatched area in Fig. 2 represents the range of
minimal cross section variation within which a total
transmission of the wave is possible for two frequency
values and an almost total transmission for the fre-
quencies lying in the frequency band between the two
maxima of the transmission coefficient.

Thus, for a given value of a? (the parameters of the
media are preset), from Fig. 2 we determine the range
of values of §,,. Then, we choose a specific value of S,,;
in this way, the geometry of the inhomogeneity is fixed.

Finally, we calculate the value of k;, = k,d (which
uniquely determines the frequency) lying between
curve / and straight line 2.

To illustrate the use of the plot shown in Fig. 2, we
take a fixed value of o%; for example, let a2 = 4. Mov-
ing along the vertical dashed line from the abscissa axis

to the intersection with the curve S(m2 ', we observe an
increase in the minimal cross section §,, from zero to
0.34. In this range of values of §,,, the transmission
coefficient has a single maximum, which corresponds
to unity and is reached at the dimensionless frequency
k,d = 0. When the cross section reaches the value §,, =
0.34, a second maximum |7] = 1 appears in the region
k,d > 0. Between the two maxima, a “plateau” is

formed, where | 7| ~ 1 in a finite frequency band. This
situation persists until the intersection with the

1 .
curve S‘m), where the cross-sectional area becomes

S,, = 0.46. At this point, the second maximum |7] =1
falls on the boundary of the region within which solu-
tion (24) is valid. This qualitative analysis on the basis
of Fig. 2 is confirmed by the results of numerical cal-
culation of the transmission coefficient (Fig. 3).

The calculation was performed on the basis of the
general expressions for the coefficient of wave trans-
mission through the combined inhomogeneity shown
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Fig. 3. Frequency dependence of the square of the wave
transmission coefficient for oo = 2 and four different values
of the minimal pipe cross section: S, = 0.09, 0.34, 0.46,
and 0.6 (curves /—4, respectively).

in Fig. 1. The expressions can be represented in the
form

2

1 T(ky)| > = T

6o p

2
{ [H—(u b)ﬂ {1+—(u+b)“, (28)
(P kls 0<k, <20,

2
D) k

|T(k1)| = 212

oV

2 2 ?
X {[1 + (b - vz)}inv - 2%vbcosv} . (29
k k

1 1

vV = A/kf—4 2 20 <k, < 0.

Expressions (28) and (29) are continuously sewed
together at the point k; = 2¢. At higher dimensionless
frequencies k; > 2¢, Eq. (29) transforms to the well-
known solution (see, e.g., [11]) describing oscillations
of the transmission coefficient |7(k,)| . The frequency
dependence of the transmission coefficient deter-
mined by Egs. (28) and (29) is represented in Fig. 3.
Here, the ratio of acoustic impedances was taken to be
a = 2 and, for the minimal cross section of the pipe
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constriction, we took the values §,, = 0.09, 0.34, 0.46,
and 0.6.

It would be of interest to solve the problem of the
broadband pulse propagation through an inhomoge-
neity possessing a region of weak variation of the coef-
ficient | T (k1)| . Such a region may occur, in particular,

for the parameters S,, = 0.46 and oo = 2 (curve 3 in
Fig. 3). If, at the input, the spectrum of the pulsed sig-
nal is bounded and lies in the low-frequency range, for
example, 0 < ® < 2¢;/d, where the transmission coef-
ficient is close to unity (for curve 3 in Fig. 3), the pulse
can tunnel through the inhomogeneity by undergoing
phase distortions only.

Atlarge values of o2 > 1 (this may be a gas layer sur-
rounded by a condensed medium) and small cross sec-
tions §,,, for the frequency corresponding to total
transmission, from Eq. (26) we obtain a simple
approximate formula:

A/ECIA/_I

For example, for d = 0.33 cm, Sm = 0.1, and an air
layer with ¢; = 330 m/s, from Eq. (25) we obtain the
frequency f= 26 kHz.

The tunneling phenomenon described above may
presumably be used in the design of frequency-selec-
tive filters with controlled characteristics. By analogy
with laser physics, one can consider the development
of a “gate” or a modulator of Q-factor for an acoustic
resonator. If, at the initial instant of time, the constric-
tion of the pipe is completely closed, i.e., §,, = 0, the
wave cannot be transmitted through the inhomogene-
ity and is completely reflected inside the resonator,
where considerable energy can be accumulated if the
Q-factor is sufficiently high. Then, if §,, increases suf-
ficiently rapidly (e.g., with the help of a piezoelectric
element) up to the value providing the tunneling
regime, the Q-factor will drastically decrease and the

SHVARTSBURG

acoustic energy will be released. This process is similar
to the operation of a Kerr shutter in a Q-switched
laser.

In closing, we note that this paper is intended to
attract the attention of researchers to the problem of
wave tunneling through special profiles of pipe con-
strictions. In the context of this problem, it is of inter-
est to study the propagation of broadband signals,
namely, pulses and nonlinear waves. Our paper may
serve as a “sketch” for subsequent investigations.
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