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Abstract—The characteristic features of elastic wave propagation in a one-dimensional model of a discrete
inhomogeneous unconsolidated medium are investigated. The model is represented by a linear chain of 80
uncoupled steel spheres with a diameter of 6.5 mm. Nonlinear effects that may arise in such systems are
reviewed. The experimental setup is described. Results of studying the dispersion of elastic waves in the system
and the dependence of the elastic wave velocity on the wave amplitude under increasing compression are pre-
sented. The results are analyzed using the Hertz contact theory.
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INTRODUCTION

In acoustics, one of the topical areas of research
close to geophysics and materials science is repre-
sented by studies of nonlinear processes caused by the
presence of mesoscale inhomogeneities and defect
structure in solids. Inhomogeneities considerably
affect the elastic properties of media and give rise to
new physical properties that are absent in homoge-
neous solids [1, 2]. Among structurally inhomoge-
neous materials, a special place is occupied by granu-
lar media because of their interesting physical proper-
ties and their widespread occurrence in nature. A
comprehensive review of the results of studying the
excitation and propagation of seismic waves in discrete
media can be found in [3].

The theory of elastic properties of unconsolidated
granular media is based on the problem of contact
interaction between individual grains. The area of
contacts between grains depends on the applied stress;
i.e., the system is deformed as an ensemble of nonlin-
ear springs. For spherical bodies experiencing elastic
deformation, the problem was formulated and solved
by Hertz (see, e.g., [4, 5]).

In the particular case of interaction between two
spheres of radius R, the radius of the contact spot a is
expressed through the static compression force F and
the reduced elastic modulus F* as

Y- (ﬂ)“ 1 _lovi 1-v

, ; (D
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where F; , are Young’s moduli of the spheres and v, ,
are their Poisson’s ratios. The mutual approach of the
spheres is

S

and the force F driving them toward each other is

F= 4—E>;“/I_eh3/2. (3)

When the difference 4, between the displacements of
the sphere centers is negative, the spheres move away
from each other without deformation and the force F
is zero. When the aforementioned difference is posi-

tive, the force F'varies as hg/ ? Ttis evident that, ifa sys-

tem consisting of two spheres oscillates under a peri-
odic external force, elastic nonlinearity will be notice-
able only in the case of considerable variations in the
contact area of the bodies. Therefore, as the compres-
sion force increases, the nonlinearity in the contact
region decreases. In the case of a weak compression,
when stretching forces can break the contact, the
grains collide. This mechanism is called “clapping”
nonlinearity [6].

Modeling of a structurally inhomogeneous
medium by a chain of spheres was described in [7].
The author studied nonstationary nonlinear perturba-
tions. The characteristic times T of the problem were
much greater than the period 7 of the sphere shape
oscillations:

t> T~2.5R/C,,
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where C] is the velocity of sound in the sphere mate-
rial. A numerical study was performed for a one-
dimensional chain of identical spherical grains. The
chain was loaded with a static compression force F;,
which was applied to the ends of the chain and caused
the initial mutual approach of the sphere centers A,
For an individual grain of number i, a displacement u;,
from the equilibrium position was introduced. For
such a particle, the equation of motion has the form

3/2

i, = AChy—u;+u; ) _A(ho_ui+1+ui)3/2a @)

A= _E2R

3m(1-v7)
where m is the mass of a single grain. Here, it is
assumed that the distance between the centers of par-
ticles does not exceed 2R. Equation (4) can also
describe the propagation of one-dimensional pertur-
bations in a three-dimensional simple cubic packing
of spheres if the front plane is parallel to the cube faces.
A similar form of equations of motion is suitable for
other regular packings. The differences only manifest
themselves in the numerical coefficient 4 involved in
Eq. (5).

Equation (4) can be reduced to the well-known
equations describing a system of nonlinear oscillators
under the assumption that the deformations in the
medium are small compared to the initial mutual
approach A:

N-1>i>2, 5)

| —u|/hy < 1.

In the lowest anharmonic approximation, Eq. (4) has
the form

;= ou(uy, = 2u;+u; q)

+BU =20+ u; (U = Uy ), (6)
o = %Ahé/z, B = gAhgl/Z, No12i>2.

In the long-wave limit, Eq. (6) vields the nonlinear
wave equation [7]

(]tt - Cé Uxx = 2C0Y Uxxxx —& Ux Uxx:
Cy = 64R’ Jhy, v = CR/6, & = CiR/h,.

In [7], the author analyzed the soliton solution to
Eq. (7), which satisfied the Korteweg—de Vries equa-
tion accurate to the terms quadratic in the nonlinearity
¢ and dispersion y coefficients. The velocity proved to
be proportional to the fourth root of the initial

)

approach, ¢, ~ hé/ * o, in terms of the force, ¢y~ FY6,
and the nonlinearity behaved as € ~ 1/A,,.

Beginning with the publications by V.E. Nester-
enko, numerous experimental and theoretical studies
of one-dimensional granular media were carried out,
many of them being devoted to studying solitons. For
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example, in [8], the propagation of large-amplitude
compression pulses in a one-dimensional chain of
steel spheres under weak static compression was inves-
tigated. All of the experimental observations of single
pulses (solitons) in such a chain were in good agree-
ment with theoretical results [7]. In [9], self-modula-
tion processes in a granular chain were considered
with allowance for the dispersion due to the discrete
nature of the medium. In [10], an ensemble of grains
immersed in a liquid was studied. The system of grains
itself possesses a high structural nonlinearity due to the
boundary contacts. In the presence of an oscillating
liquid, an additional inertial nonlinearity appears
because of the accelerated motion of particles. Attrac-
tion forces arise between the particles in a liquid flow,
and the Hertz repulsion manifests itself in the course
of the deformation of colliding grains. In this case,
large spatial gradients of forces are caused by the inho-
mogeneity of mass distribution. In such a medium, the
natural frequency of linear oscillations of an elemen-
tary oscillator is

1/6
fo= L fJ’_"(EzFO—RIR2
2N 2 R, +R

b

where a is the coefficient depending on the volumes
and densities of two neighboring spherical particles
and F, is the static compression force. For large
oscillation amplitudes, when the amplitude A4 is on
the order of the grain diameter, the nonlinear fre-
quency [10]

f nonlin —

Jar)" (R1 + Rz)
2AEN RiR,

proves to be two to three orders of magnitude smaller
than the frequency in the linear case.

If an acoustic wave propagates in the liquid sur-
rounding the grains, the spheres are attracted to each
other, collide, and move apart, their motion in the liq-
uid being almost free. After subsequent collisions, the
spheres move progressively farther from one another.
Since, at the instant of collision, the relative velocities
of neighboring spheres are random, a random oscilla-
tion pattern is formed. The oscillation amplitude on
the average increases with time, and the spectrum of
oscillations shifts to lower frequencies [10].

Three-dimensional structures representing natural
granular media, such as sand or pebble, are of practical
interest for studies and diagnostics. In [11], slow non-
linear acoustic processes were studied in hysteretic
granular media. For this purpose, a granite aggregate
was used with a grain size of 1—2 ¢cm. Sound was gen-
erated at a frequency of 5.6 kHz by a piezoceramic
plate and received by accelerometers, which were
placed among the grains and had the size close to that
of grains. The dependence of the oscillation amplitude
ofan individual grain on the amplitude of acoustic sig-
nal excitation was found to be nonmonotonic. The
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Fig. 1. Chain of identical masses connected with springs.

spectra of slow fluctuations of harmonic and subhar-
monic components of the signal propagating in the
granular medium were investigated.

In [12], nonlinear effects arising in a three-dimen-
sional granular medium were studied. Demodulation
of amplitude modulated longitudinal and shear waves
was observed. As a result of demodulation, a longitudi-
nal wave was formed irrespective of the pumping wave
polarization.

In addition to the giant nonlinearity providing the
high sensitivity of nonlinear measuring techniques,
structurally inhomogeneous media are also of interest
because of the wunusual nonlinear phenomena
observed in them [1]. One of these phenomena is the
presence of the “dominant” frequency in the media of
the type of moist sand, clay, or cracked rock. No mat-
ter what the oscillation excitation frequency may be, at
the output of such a medium, the “dominant” signal is
received while other spectral components, including
the initial frequency, are weak. The characteristic val-
ues of the dominant frequency are as follows: 8—10 Hz
for gravel, 25 Hz for sea sand, 40 Hz for clay, and 100 Hz
for eroded granite. It is of interest that, when vibra-
tions with a dominant frequency of 12 Hz are applied
to a water-encroached oil pool, the oil fraction in the
discharge approximately doubles. The origin of the
dominant frequencies is the presence of internal reso-
nance properties of fragmented soils and rocks, as well
as their strong nonlinearity causing the oscillation
energy transfer to these frequencies.

Today, granular media and, in particular, one-
dimensional chains of balls, are studied by several
research groups. Most of the studies are devoted to sol-
itary waves (solitons) in these media. Periodic waves
are less investigated. Therefore, the purpose of this
paper is the study of the characteristic features of peri-
odic wave propagation in a one-dimensional model of
a granular medium.

THE BASIC FORMULAS AND ESTIMATES

Let us consider a chain of spheres that have iden-
tical masses and are connected with springs [13, 14].
For each element of the chain (Fig. 1), we introduce
the displacement from the equilibrium position,
U, < hy, where A is the initial mutual approach of the
sphere centers, r is the number of a particle, a is the
distance between the elements, M is the mass of a par-
ticle, and p is the coefficient of elasticity of a spring.
The system of equations of motion has the form
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r+1 (8)
= “(Ur—l - Ur) _“(Ur_ Ur+1) = “(Ur—1+ Ur+1_2Ur)'

For propagating waves, the solution is sought in the
form

U. = ei(mt—kar) (9)
where o is the cyclic frequency, k = o/V,, = 2r/A is
the wave number, V,, is the phase velocity of the wave

in the chain, and A is the wavelength. Substituting
Eq. (9) in Eq. (8), we obtain the dispersion relation

o = 2A/A%sin(%a).

To analyze small-amplitude waves in the system
with Hertzian nonlinearity, we use the above disper-
sion relation, in which the elastic modulus p depends
on the initial compression. In the case of a Hertz con-
tact, the force F'is related to compression by nonlinear
relation (3):

(10)

32

F= MhO ’
which yields
- OF _ EJR ;in (11)
Oh (1-v9)

With allowance for Eq. (11), dispersion relation (10)
for the chain of spheres with Hertz contacts takes the

form
o = ka EJR h(l)/zsin(ka/2).
NI =M (ka/2)

This allows us to obtain the expressions for the phase

Von and group Vy, velocities:

EJR hl/zsin(ka/2)
(1M = (ka/2) ~

Ve =22 =4 /E_Jf_‘hgﬂcos(ka/z). (13)
ok (1-vHM

In Egs. (12) and (13), we substitute the distance
between the particles a = 2R and the expression for A,
(Eq. (2)) from the Hertz contact theory,

e o (32(;;7:2))2/3.

As a result, we obtain the dependence of the phase V,
and group V,, velocities in the chain and the dispersion
dependence (k) on the force F:

(12)

Q)
Vph=z=a
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et ) B o
/- g_(;{) ) j%(;)l/6((ff2)) cos(kR), (15)

= %/[( 21;)1/6((115“/})) sin(kR).

From Egs. (14)—(16), it follows that both phase V},

and group V,, velocities exhibit a dispersion. At kR =

2nR/h = /2 or A = 4R, the group velocity V,, is zero.

The system under consideration has a maximal fre-

quency ®,,.. above which the elastic wave cannot

propagate in the system,; i.e., the system operates as a
EJR

low-pass filter:
=)
MY 27N - >)

From the analysis of Egs. (14)—(17), it follows that the
physical parameters of the chain of spheres, namely,
the phase V), and group V,, velocities and the cutoff
frequency in the periodic discrete system with Hert-
zian nonlinearity, can be controlled by an external
static force.

(16)

(Dmax -

7)

Substituting the known quantities, i.e., the param-
eters of steel [19] and the parameters of the chain (see
table), in the above formulas, we calculate the depen-
dence of the maximal frequency of the wave (the cutoff
frequency) as a function of the force applied to the
chain:

o = J%l(;)l/6( E«ﬁa

2)) ~ 145400 F'"° rad/s,
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The parameters of the chain of balls used in the experiment

Number of chain elements (balls) N=280
Material Steel

Ball radius R=3.25mm
Ball mass m=112g

Surface roughness (rms deviation of
the surface profile)

Rmean dev. ® 1 pm

Maximal allowable compression force
for the system to remain in the elastic
deformation region

Fo=120N

Maximal contact radius Apax = 138.89 um

S =0.06 mm?

max

B max = 5.93 pm

Maximal contact area

Maximal mutual approach of two ball
centers

Length of the chain consisting of 80 balls
Maximal decrease in the chain length

€=52cm
A€ = 0.47 mm

DESCRIPTION OF THE EXPERIMENT

To study the characteristic features of elastic wave
propagation in a periodic unconsolidated structure
with a strong Hertzian contact nonlinearity [15—17],
we used the experimental setup schematically repre-
sented in Fig. 2. The medium was modeled by a chain
of 80 identical steel balls 6.5 mm in diameter; the balls
were placed in a fabric-based laminate tube. The gap
between the balls and the tube was small to maintain
the alignment of the system; on the other hand, it was
sufficiently large to allow free motion of the balls.
Unfortunately, we could not completely eliminate dry
friction. The table shows the main parameters of the
system used in the experiment and the limitations
imposed on the external conditions because of the fact
that the Hertz contact theory is only valid in the elastic

(1- deformation region. The main parameters of the con-
s tact region that were calculated on the basis of the
Of fra = 23F" kHz. Hertz theory [4] are also presented in the table.
Oscilloscope
HP 54810a Amplifier Transducers
fo}No) [o}No) / \
__ OO0 = O,
Synchronization
Generator .
HP 34120 Amplifier
fo}¥o) fo}No)

Fig. 2. Flow chart of the experimental setup.
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Fig. 3. Oscillograms of the acoustic signal in the chain of
balls for different values of the compression force. (The
solid mark indicates the onset of the sounding pulse.)

For longitudinal wave excitation in the chain, we
used a compound transducer, which consisted of four
piezoceramic rings with a thickness of 1.7 mm and a
diameter of 10.9 mm. A static compression force was
applied to the outerside of the radiating transducer. At
the other end of the chain, elastic waves were received
by a GSO506HR transducer (Matec Instruments,
Inc.) with a resonance frequency of 5 MHz. The
receiving transducer had a uniform amplitude—fre-
quency characteristic in the frequency band 0.01—
3 MHz. The acoustic contact between the transducer
and the system occurred through salol. Radio pulses
with a duration of 10—16 periods of the carrier fre-
quency were sent from an HP 34120 generator to a
power amplifier (Behringer Europower 2500). The

KOROBOV et al.

amplified sounding radio pulses, the amplitude of
which could be varied within 0 to 100 V, were supplied
to the radiating transducer. The signal transmitted
through the chain of balls was amplified by a weak-sig-
nal amplifier, observed with a dual-beam oscilloscope
(HP 54810a), and sent to a computer for storage and
further data processing.

The sound velocity in the one-dimensional chain
of balls was measured by the echo pulse method [18].
Measuring the elastic pulse propagation time, which
was identical to the delay 1, between the sounding
pulse and the pulse transmitted through the chain with
a length /, it was possible to determine the velocity of
sound,

C=l/r,

The errors in velocity measurements were mainly
determined by the errors in measuring the time 1.
Estimates showed that the errors related to variations
in the chain length under the static force can be
ignored.

Figure 3 shows a series of acoustic pulses at a fre-
quency of 24 kHz that were observed by the oscillo-
scope for different values of the external compression
force F. One can see that an increase in F'leads to a
considerable decrease in the propagation time of the
elastic wave, i.e., to an increase in its velocity. For
example, as the force F'varies from 3.4 to 53.4 N, the
velocity increases by a factor of 1.8. As one can see
from Fig. 3, an increase in the compression force is
accompanied by a decrease in the elastic wave attenu-
ation in the chain. According to [17], the attenuation
of elastic waves in the given system is determined not
by the attenuation in the material of the balls (steel),
but by the area of their contacts. From Eq. (1), one can
see that, as the compression force increases, the radius
of the ball contact area increases. This reduces the
sound attenuation in the chain. Despite the consider-
able decrease in the elastic wave attenuation in the
chain of balls with an increase in compression, the
attenuation remains much greater than the wave
attenuation in steel at a frequency of 24 kHz [19].

We also measured the frequency dependence of the
group velocity, V,, = V,(®), in the chain for different
values of the compression force. Figure 4 shows the
experimental results superimposed on the theoretical
dependences, which were calculated using Egs. (16)
and (17).

The dispersion curves were calculated as follows.
According to the definition of the group velocity, we
have

® = J'Vgrdk. (18)

Substituting Eq. (15) for ¥, in Eq. (18) and perform-
ing some transformations, we obtain the expression
for w(k),

(k) = Vytan(kR)/R.
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Fig. 4. Dependences of the phase and group velocities on
the frequency of the elastic wave.

For the same compression forces, theoretical dis-
persion curves m(k) were plotted (the solid line) and
experimental points were superimposed on them
(Fig. 5). As one can see from Figs. 4 and 5, the exper-
imental results agree fairly well with the theoretical
calculations. The deviations observed in the plot are
related to the presence of friction between the balls
and the tube and also to the neglect of the finite size of
the balls and their surface roughness in the calcula-
tions.

Now, let us analyze the dependence of the elastic
wave velocity on the wave amplitude for different
values of the static compression force. We consider
a harmonic wave propagating in the chain and
assume that the wave amplitude /4 satisfies the con-
dition A < h,. Then, Eq. (15) can be represented in
the form

V=22 a\/E—“/z*(ho + 1) cos(ka/2)
ok (1=-VvHM

= Clh+hy)" = Chy"(1+2)",
EJR

(1-v)M
Now, In Eq. (19), we expand (1 + €£)/* in a Taylor

(19)

where C=a cos(ka/2) and e = (h/hy) < 1.
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Fig. 5. Dispersion curves of the elastic wave in the chain for
three different values of the compression force.

series and restrict it to terms quadratic in €. This
yields

V= ‘g—"lj = C(h+hp)" = CHYA (1 + &)
(20)
= Ché“[l + l8— i82+ J
FAEY

Substituting 4 = h,sin(wf), where 4, is the acoustic
wave amplitude, in Eq. (20) and applying the time
averaging procedure, we obtain

(V) = Chg/“[l - i(@ﬂ.

21
64\, @D

From Eq. (21), it follows that the group velocity of

an elastic wave in the chain depends on the constant

compression value A, and is proportional to the

square of the acoustic wave amplitude #,. For
1/4

hy—= 0, Vy(h, — 0) = Chy . Taking AV, (h,) =
Vel —= 0) — (V) , we obtain

AVg(hy)  _ 3 (@)2
Vo(h, — 0) 64

hy

In the experiment, we measured the propagation
time for the maximum of the envelope of the first
transmitted pulse. As the amplitude at the radiating
transducer increased, the maximum shifted leftward,
i.e., the velocity increased. The results of measuring
the relative velocity variation on the voltage amplitude
A at the radiating transducer are shown in Fig. 6 for
four different values of the compression force. The val-
ues of the external static force F were as follows: 0.98,
1.96, 3.92, and 7.84 N. For weak compression F =
0.98 N, the dependence was quadratic: AV/V =
0.00164% — 0.0143A. The ratio AV/V increased up to
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Fig. 6. Dependence of the relative velocity of the elastic wave
on the wave amplitude for different values of the static force.

2.7% when the signal amplitude A at the radiating
transducer increased to 45 V. The quadratic depen-
dence of the velocity on the voltage points to the pres-
ence of a considerable cubic nonlinearity in the one-
dimensional chain of balls.

As the compression force increased, the depen-
dence of the velocity on the wave amplitude became
weaker: AV/V = 0.00044% + 0.0065A4; beginning with a
force of ~4 N, the dependence became approximately
linear and independent of the further increase in the
compression force: AV/V = 7 x 104> + 0.00724 ~
0.0072A. This experimental observation confirms the
predicted decrease in the contact nonlinearity with
increasing static force.

CONCLUSIONS

Experimental studies of the characteristic features
of small-amplitude elastic wave propagation in a one-
dimensional model of a periodic unconsolidated
structure with Hertzian nonlinearity were carried out.
The dependence of the group velocity of an elastic
wave on its frequency was calculated and measured.
The dispersion relations were calculated for different
values of the compression force. The theoretical and
experimental dependences were found to be in good
agreement. The dependence of the elastic wave veloc-
ity on the wave amplitude was measured for different
values of the compression force. A quadratic depen-
dence of the velocity of an elastic wave on its ampli-
tude was observed, which points to the presence of a
considerable cubic nonlinearity in the one-dimen-
sional chain of balls. The results of the aforementioned
studies suggest a conclusion that the elastic linear and
nonlinear properties of the system under consider-
ation may vary under the effect of an external force.
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