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A b s t ra c t— The characteristic features of elastic wave propagation in a one-dimensional model of a discrete 
inhomogeneous unconsolidated medium are investigated. The model is represented by a linear chain of 80 
uncoupled steel spheres with a diameter of 6.5 mm. Nonlinear effects that may arise in such systems are 
reviewed. The experimental setup is described. Results of studying the dispersion of elastic waves in the system 
and the dependence of the elastic wave velocity on the wave amplitude under increasing compression are pre­
sented. The results are analyzed using the Hertz contact theory.
D O I :  10.1134/S106377101004007X

IN T R O D U C T IO N

In  acoustics, one o f the topical areas o f  research 
close to geophysics and m aterials science is repre­
sented by studies o f nonlinear processes caused by the 
presence o f m esoscale inhom ogeneities and defect 
structure in  solids. Inhom ogeneities considerably 
affect the elastic properties o f m edia and give rise to 
new physical properties tha t are absent in  hom oge­
neous solids [1 , 2 ]. Am ong structurally inhom oge­
neous m aterials, a special place is occupied by granu­
lar m edia because o f their interesting physical p roper­
ties and their widespread occurrence in  nature . A 
com prehensive review o f the results o f studying the 
excitation and propagation o f seismic waves in  discrete 
m edia can  be found in  [3 ].

T he theory o f elastic properties o f unconsolidated 
granular m edia is based on the problem  o f contact 
in teraction  between individual grains. T he area o f 
contacts between grains depends on  the applied stress; 
i.e., the system  is deform ed as an  ensemble o f n on lin ­
ear springs. F o r spherical bodies experiencing elastic 
deform ation, the problem  was form ulated and  solved 
by H ertz (see, e.g., [4, 5]).

w here E 1, 2 are Young’s m oduli o f the spheres and v 1, 2 
are their Poisson’s ratios. T he m utual approach o f the 
spheres is

h0
F  \  !/3 

16 R E * 2
(2)

and the force F driving them  toward each other is

F  = 4_ E 4 R  h f
3 0

(3)
W hen the difference h0 between the displacem ents o f 
the sphere centers is negative, the spheres move away 
from  each o ther w ithout deform ation and the force F 
is zero. W hen the aforem entioned difference is posi­

tive, the force Fvaries as h 0 . It is evident that, if  a sys­
tem  consisting o f two spheres oscillates u nder a peri­
odic external force, elastic nonlinearity  will be no tice­
able only in  the case o f considerable variations in  the 
contact area o f the bodies. Therefore, as the com pres­
sion force increases, the nonlinearity  in  the contact 
region decreases. In  the case o f  a weak com pression, 
w hen stretching forces can  break the contact, the 
grains collide. This m echanism  is called “clapping” 
nonlinearity  [6 ].

In  the particular case o f in teraction  between two 
spheres o f radius R, the radius o f the contact spot a is 
expressed through the static com pression force F  and 
the reduced elastic m odulus E* as

a 3 FR \ 1/3 J _  = 1 -  v1 + 1 - v 2

AE*) ’ E* E 1 E 2 ’
(1)

M odeling o f a structurally inhom ogeneous 
m edium  by a chain  o f spheres was described in  [7 ]. 
T he au tho r studied nonstationary  nonlinear pertu rba­
tions. T he characteristic tim es т o f the problem  were 
m uch  greater th an  the period T  o f the sphere shape 
oscillations:

т >  T -  2 .5 R /C 1,
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w here C1 is the velocity o f sound in  the sphere m ate­
rial. A  num erical study was perform ed for a one­
dim ensional chain  o f identical spherical grains. The 
chain  was loaded w ith a static com pression force F0,  
w hich was applied to the ends o f the chain  and caused 
the initial m utual approach o f the sphere centers h0. 
For an  individual grain o f num ber i, a displacem ent ui 
from  the equilibrium  position was introduced. For 
such a particle, the equation o f m otion  has the form

U i = A ( h 0 _  ui + ui _ 1 ) 3/2 -  A  (h 0 -  ui + 1 + ui )3/2, (4)

A  = Е - ^  , N _  1 > i > 2 , (5)
3 m  ( 1 _ v 2)

w here m  is the mass o f a single grain. H ere, it is 
assum ed tha t the distance between the centers o f p a r­
ticles does n o t exceed 2R. E quation (4) can  also 
describe the propagation o f one-dim ensional pertu r­
bations in  a three-dim ensional sim ple cubic packing 
o f spheres if  the front plane is parallel to  the cube faces. 
A  sim ilar form  o f equations o f m otion  is suitable for 
o ther regular packings. T he differences only m anifest 
themselves in  the num erical coefficient A  involved in  
Eq. (5).

E quation (4) can  be reduced to the well-known 
equations describing a system  o f nonlinear oscillators 
u nder the assum ption tha t the deform ations in  the 
m edium  are small com pared to the initial m utual 
approach h0:

| u _  i _  u | / h o <  1 .

In  the lowest anharm onic approxim ation, Eq. (4) has 
the form

example, in  [8 ], the propagation o f large-am plitude 
com pression pulses in  a one-dim ensional chain  o f 
steel spheres under weak static com pression was inves­
tigated. All o f the experim ental observations o f single 
pulses (solitons) in  such a chain  were in  good agree­
m ent w ith  theoretical results [7]. In  [9], self-m odula­
tion  processes in  a granular chain  were considered 
w ith allowance for the dispersion due to the discrete 
nature o f the m edium . In  [10], an  ensem ble o f grains 
im m ersed in  a liquid was studied. T he system  o f grains 
itselfpossesses a high structural nonlinearity  due to the 
boundary contacts. In  the presence o f an  oscillating 
liquid, an  additional inertial nonlinearity  appears 
because o f the accelerated m otion  o f particles. A ttrac­
tion  forces arise between the particles in  a liquid flow, 
and the H ertz repulsion manifests itself in  the course 
o f the deform ation o f colliding grains. In  this case, 
large spatial gradients o f  forces are caused by the in h o ­
m ogeneity o f mass distribution. In  such a m edium , the 
natural frequency o f linear oscillations o f an  elem en­
tary oscillator is

f  = 1 fea f  e2 f R1R2

л " = 2 N 7 v  F0R T R 1/6
w here a  is th e  coefficien t depending on  the  volum es 
and  densities o f  two neighboring spherical partic les 
and  F0 is the  static com pression force. For large 
oscillation  am plitudes, w hen  the  am plitude A  is on 
the  o rder o f  the  grain  diam eter, the  n o n lin ear fre­
quency  [1 0 ]

/nonlin V ^ F f  f  R  + R2̂

2AE1/3 ̂  R 1R 2 '

u i  = a ( u i  + 1 _ 2u i  + ut_  1)+ P(u i  + 1 _ 2 u i  + u i _  1)(u i _  1 _ u i  + 1), (6)
a  = -  Ah0/2, в  =  3A h _ 1' 2 , 

H 8 0
N _  1 > i > 2 .

In  the long-wave lim it, Eq. (6 ) yields the nonlinear 
wave equation [7]

C2
0

2
Utt _ C0 Uxx = 2 C0 Y Uxxxx _ & Ux Uxx,

6A R 2J h 0, y = C0 R2/ 6 , 6 = C0 R /  h (7)

In  [7], the au tho r analyzed the soliton solution to 
Eq. (7), w hich satisfied the Korteweg—de Vries equa­
tion  accurate to the term s quadratic in  the nonlinearity  6 and dispersion Y coefficients. T he velocity proved to 
be proportional to the fourth  roo t o f  the initial

approach, c0 ~ h 0/4 , or, in  term s o f the force, c0 ~ F1/6, 
and the nonlinearity  behaved as 6 ~ 1/h 0.

Beginning w ith  the publications by V.F. N ester­
enko, num erous experim ental and theoretical studies 
o f one-dim ensional granular m edia were carried out, 
m any o f them  being devoted to studying solitons. For

proves to  be two to  th ree orders o f m agnitude sm aller 
th an  the frequency in  the linear case.

If  an  acoustic wave propagates in  the liquid sur­
rounding the grains, the spheres are attracted  to each 
other, collide, and move apart, their m otion  in  the liq­
uid being alm ost free. After subsequent collisions, the 
spheres move progressively farther from  one another. 
Since, a t the instant o f  collision, the relative velocities 
o f neighboring spheres are random , a random  oscilla­
tion  pattern  is formed. T he oscillation am plitude on 
the average increases w ith tim e, and the spectrum  o f 
oscillations shifts to lower frequencies [10 ].

T hree-dim ensional structures representing natural 
granular m edia, such as sand or pebble, are ofpractical 
interest for studies and diagnostics. In  [11], slow n o n ­
linear acoustic processes were studied in  hysteretic 
granular m edia. For this purpose, a granite aggregate 
was used w ith  a grain size o f 1—2 cm . Sound was gen­
erated at a frequency o f 5.6 kH z by a piezoceram ic 
plate and received by accelerom eters, w hich were 
placed am ong the grains and had the size close to that 
o f grains. T he dependence o f the oscillation am plitude 
o f an  individual grain on  the am plitude o f acoustic sig­
nal excitation was found to be nonm onotonic. T he
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Ur -  1 Ur Ur + 1Fig. 1. Chain of identical masses connected with springs.

spectra o f slow fluctuations o f harm onic and subhar­
m onic com ponents o f the signal propagating in the 
granular m edium  were investigated.

In  [12], nonlinear effects arising in a th ree-d im en­
sional granular m edium  were studied. D em odulation 
o f am plitude m odulated longitudinal and shear waves 
was observed. As a result o f dem odulation, a longitudi­
nal wave was form ed irrespective o f the pum ping wave 
polarization.

In  addition to  the giant nonlinearity  providing the 
high sensitivity o f nonlinear m easuring techniques, 
structurally inhom ogeneous m edia are also o f interest 
because o f the unusual nonlinear phenom ena 
observed in them  [1]. One o f these phenom ena is the 
presence o f the “dom inan t” frequency in the m edia o f 
the type o f m oist sand, clay, or cracked rock. N o  m at­
ter w hat the oscillation excitation frequency may be, at 
the output o f  such a m edium , the “dom inan t” signal is 
received while o ther spectral com ponents, including 
the initial frequency, are weak. The characteristic val­
ues o f the dom inant frequency are as follows: 8—10 H z 
for gravel, 25 Hz for sea sand, 40 Hz for clay, and 100 Hz 
for eroded granite. It is o f  interest that, w hen vibra­
tions with a dom inant frequency o f 12 H z are applied 
to  a w ater-encroached oil pool, the oil fraction in the 
discharge approxim ately doubles. The origin o f the 
dom inant frequencies is the presence o f internal reso­
nance properties o f fragm ented soils and rocks, as well 
as their strong nonlinearity  causing the oscillation 
energy transfer to these frequencies.

Today, granular m edia and, in particular, one­
dim ensional chains o f balls, are studied by several 
research groups. M ost o f  the studies are devoted to sol­
itary waves (solitons) in these media. Periodic waves 
are less investigated. Therefore, the purpose o f this 
paper is the study o f the characteristic features o f peri­
odic wave propagation in a one-dim ensional m odel o f 
a granular m edium .

T H E  BASIC FO RM U LA S A N D  ESTIM ATES
Let us consider a cha in  o f  spheres th a t have id en ­

tical m asses and  are connected  w ith springs [13, 14]. 
For each e lem ent o f the cha in  (Fig. 1), we in troduce 
the d isp lacem ent from  the equilib rium  position , 
Ur ^  h0, where h0 is the initial m utual approach o f the 
sphere centers, r  is the num ber o f a particle, a is the 
distance between the elem ents, M  is the mass o f a p a r­
ticle, and p is the coefficient o f elasticity o f a spring. 
The system o f equations o f m otion has the form

t i t U r — F  -  FM  - — Fr- 1 Fr+ 1
d f

— p ( Ur - 1 -  Ur) -  p ( Ur -  Ur + 1) =  p ( Ur - + Ur +1 -  2 Ur).

(8)

For propagating waves, the solution is sought in the 
form

Ur -  e - kar), (9)

where ю is the cyclic frequency, k  =  * /V ph =  2n/X is 
the wave num ber, Vph is the phase velocity o f the wave 
in the chain, and X is the wavelength. Substituting 
Eq. (9) in Eq. (8 ), we obtain the dispersion relation

* = ( i )  ■ <10>

To analyze sm all-am plitude waves in the system 
w ith H ertzian  nonlinearity, we use the above disper­
sion relation, in  w hich the elastic m odulus p depends 
on the initial com pression. In  the case o f a H ertz co n ­
tact, the force F  is related to com pression by nonlinear 
relation (3):

F  — p h 3/2
0

w hich yields

— cF  —  E j R  h i/2
d h 0 (1  -  у 2) 0

(11)
With allowance for Eq. (11), dispersion relation (10) 

for the chain o f spheres w ith H ertz contacts takes the 
form

ю  — ka  I 1!-fR  t i l 2sin ( k a / 2 ) .
A /(  1 -  v 2 )  M  ( k a / 2  )

This allows us to obtain the expressions for the phase 
Vph and group Vg. velocities:

gr дю 
d k

a

a

' E j R  h i/2 sin(k a / 2 ) (1-v2)Mh0 (k a /2) ’
(12)

1—E a/R — h 1/2 Cos ( k a /2 ). (13)41 -  v2) M
In  Eqs. (12) and (13), we substitute the distance 
between the particles a =  2R  and the expression for h0 
(Eq. (2)) from  the H ertz contact theory,

h 0
3F(1 -  v 2V 2/3

2 E j R  )

As a result, we obtain the dependence o f the phase Vph 
and group Vgr velocities in the chain and the dispersion 
dependence * (k ) on  the force F:
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Vph 
Vgr =

•  2R  f 3F ] 1 /6 f  e J r  ] 1 /3 f s i n ( k R ) ]

" k M  2 J  ^ - v 2/  ^  k R  J  ’

s ■ i  sw-™
( 1 4 )

( 1 5 )

•  ■  i s ' " 6 >

F r o m  E q s .  ( 1 4 ) — ( 1 6 ) ,  i t  f o l l o w s  t h a t  b o t h  p h a s e  V p h  

a n d  g r o u p  V g r  v e l o c i t i e s  e x h i b i t  a  d i s p e r s i o n .  A t  k R  =  

2 n R / X  =  n / 2  o r  X  =  4 R ,  t h e  g r o u p  v e l o c i t y  V g r  i s  z e r o .  

T h e  s y s t e m  u n d e r  c o n s i d e r a t i o n  h a s  a  m a x i m a l  f r e ­

q u e n c y  • m a x , a b o v e  w h i c h  t h e  e l a s t i c  w a v e  c a n n o t  

p r o p a g a t e  i n  t h e  s y s t e m ;  i . e . ,  t h e  s y s t e m  o p e r a t e s  a s  a  

l o w - p a s s  f i l t e r :

• max 2  f3/]1/6f_ je4 r \  1/3 \ 1 -v Y

The parameters of the chain of balls used in the experiment

Number of chain elements (balls) N  = 80
Material Steel
Ball radius R = 3.25 mm
Ball mass m = 1.12 g
Surface roughness (rms deviation of 
the surface profile)

R mean dev. ~ 1 hm

Maximal allowable compression force 
for the system to remain in the elastic 
deformation region

F m a x  = 120 N

Maximal contact radius ^ m a x  = 138.89 ^m
Maximal contact area Smax = 0.06 mm2

Maximal mutual approach of two ball 
centers

h 0  m a x  = 5 .93 Pm

Length of the chain consisting of 80 balls t  = 52 cm
Maximal decrease in the chain length At m a x  = 0.47 mm

D E S C R I P T I O N  O F  T H E  E X P E R I M E N T

F r o m  t h e  a n a l y s i s  o f  E q s .  ( 1 4 ) — ( 1 7 ) ,  i t  f o l l o w s  t h a t  t h e  

p h y s i c a l  p a r a m e t e r s  o f  t h e  c h a i n  o f  s p h e r e s ,  n a m e l y ,  

t h e  p h a s e  V p h  a n d  g r o u p  V g r  v e l o c i t i e s  a n d  t h e  c u t o f f  

f r e q u e n c y  i n  t h e  p e r i o d i c  d i s c r e t e  s y s t e m  w i t h  H e r t ­

z i a n  n o n l i n e a r i t y ,  c a n  b e  c o n t r o l l e d  b y  a n  e x t e r n a l  

s t a t i c  f o r c e .

S u b s t i t u t i n g  t h e  k n o w n  q u a n t i t i e s ,  i . e . ,  t h e  p a r a m ­

e t e r s  o f  s t e e l  [ 1 9 ]  a n d  t h e  p a r a m e t e r s  o f  t h e  c h a i n  ( s e e  

t a b l e ) ,  i n  t h e  a b o v e  f o r m u l a s ,  w e  c a l c u l a t e  t h e  d e p e n ­

d e n c e  o f  t h e  m a x i m a l  f r e q u e n c y  o f  t h e  w a v e  ( t h e  c u t o f f  

f r e q u e n c y )  a s  a  f u n c t i o n  o f  t h e  f o r c e  a p p l i e d  t o  t h e  

c h a i n :

• max 2 f3Л1/6 f E R A 1/3
1 4 5 4 0 0 F 1/6  r a d / s ,

o r  / max ■  2 3 F 1/6 k H z .

T o  s t u d y  t h e  c h a r a c t e r i s t i c  f e a t u r e s  o f  e l a s t i c  w a v e  

p r o p a g a t i o n  i n  a  p e r i o d i c  u n c o n s o l i d a t e d  s t r u c t u r e  

w i t h  a  s t r o n g  H e r t z i a n  c o n t a c t  n o n l i n e a r i t y  [ 1 5 — 1 7 ] ,  

w e  u s e d  t h e  e x p e r i m e n t a l  s e t u p  s c h e m a t i c a l l y  r e p r e ­

s e n t e d  i n  F i g .  2 .  T h e  m e d i u m  w a s  m o d e l e d  b y  a  c h a i n  

o f  8 0  i d e n t i c a l  s t e e l  b a l l s  6 . 5  m m  i n  d i a m e t e r ;  t h e  b a l l s  

w e r e  p l a c e d  i n  a  f a b r i c - b a s e d  l a m i n a t e  t u b e .  T h e  g a p  

b e t w e e n  t h e  b a l l s  a n d  t h e  t u b e  w a s  s m a l l  t o  m a i n t a i n  

t h e  a l i g n m e n t  o f  t h e  s y s t e m ;  o n  t h e  o t h e r  h a n d ,  i t  w a s  

s u f f i c i e n t l y  l a r g e  t o  a l l o w  f r e e  m o t i o n  o f  t h e  b a l l s .  

U n f o r t u n a t e l y ,  w e  c o u l d  n o t  c o m p l e t e l y  e l i m i n a t e  d r y  

f r i c t i o n .  T h e  t a b l e  s h o w s  t h e  m a i n  p a r a m e t e r s  o f  t h e  

s y s t e m  u s e d  i n  t h e  e x p e r i m e n t  a n d  t h e  l i m i t a t i o n s  

i m p o s e d  o n  t h e  e x t e r n a l  c o n d i t i o n s  b e c a u s e  o f  t h e  f a c t  

t h a t  t h e  H e r t z  c o n t a c t  t h e o r y  i s  o n l y  v a l i d  i n  t h e  e l a s t i c  

d e f o r m a t i o n  r e g i o n .  T h e  m a i n  p a r a m e t e r s  o f  t h e  c o n ­

t a c t  r e g i o n  t h a t  w e r e  c a l c u l a t e d  o n  t h e  b a s i s  o f  t h e  

H e r t z  t h e o r y  [ 4 ]  a r e  a l s o  p r e s e n t e d  i n  t h e  t a b l e .

Fig. 2. Flow chart of the experimental setup.
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Fig. 3. Oscillograms of the acoustic signal in the chain of 
balls for different values of the compression force. (The 
solid mark indicates the onset of the sounding pulse.)

For longitudinal wave excitation in the chain, we used a compound transducer, which consisted of four piezoceramic rings with a thickness of 1.7 mm and a diameter of 10.9 mm. A static compression force was applied to the outer side of the radiating transducer. At the other end of the chain, elastic waves were received by a GS0506HR transducer (Matec Instruments, Inc.) with a resonance frequency of 5 MHz. The receiving transducer had a uniform amplitude—fre­quency characteristic in the frequency band 0.01— 3 MHz. The acoustic contact between the transducer and the system occurred through salol. Radio pulses with a duration of 10—16 periods of the carrier fre­quency were sent from an HP 34120 generator to a power amplifier (Behringer Europower 2500). The

amplified sounding radio pulses, the amplitude of which could be varied within 0 to 100 V, were supplied to the radiating transducer. The signal transmitted through the chain of balls was amplified by a weak-sig­nal amplifier, observed with a dual-beam oscilloscope (HP 54810a), and sent to a computer for storage and further data processing.The sound velocity in the one-dimensional chain of balls was measured by the echo pulse method [18]. Measuring the elastic pulse propagation time, which was identical to the delay Td between the sounding pulse and the pulse transmitted through the chain with a length l, it was possible to determine the velocity of sound, C = l/xd.The errors in velocity measurements were mainly determined by the errors in measuring the time Td. Estimates showed that the errors related to variations in the chain length under the static force can be ignored.Figure 3 shows a series of acoustic pulses at a fre­quency of 24 kHz that were observed by the oscillo­scope for different values of the external compression force F. One can see that an increase in F  leads to a considerable decrease in the propagation time of the elastic wave, i.e., to an increase in its velocity. For example, as the force F  varies from 3.4 to 53.4 N, the velocity increases by a factor of 1.8. As one can see from Fig. 3, an increase in the compression force is accompanied by a decrease in the elastic wave attenu­ation in the chain. According to [17], the attenuation of elastic waves in the given system is determined not by the attenuation in the material of the balls (steel), but by the area of their contacts. From Eq. (1), one can see that, as the compression force increases, the radius of the ball contact area increases. This reduces the sound attenuation in the chain. Despite the consider­able decrease in the elastic wave attenuation in the chain of balls with an increase in compression, the attenuation remains much greater than the wave attenuation in steel at a frequency of 24 kHz [19].We also measured the frequency dependence of the group velocity, Vgr = Pgr(®), in the chain for different values of the compression force. Figure 4 shows the experimental results superimposed on the theoretical dependences, which were calculated using Eqs. (16) and (17).The dispersion curves were calculated as follows. According to the definition of the group velocity, we have ю = I VgIdk. (18)Substituting Eq. (15) for Vgr in Eq. (18) and perform­ing some transformations, we obtain the expression for ю(к), ю( к) = Vgt tan (k R ) /R .
ACOUSTICAL PHYSICS Vol. 56 No. 4 2010
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V, m/s

f ,  kHz

Fig. 4. Dependences of the phase and group velocities on 
the frequency of the elastic wave.

For the same com pression forces, theoretical dis­
persion curves f ( k )  were p lotted (the solid line) and 
experim ental points were superim posed on  them  
(Fig. 5). As one can see from  Figs. 4 and 5, the exper­
im ental results agree fairly well w ith the theoretical 
calculations. T he deviations observed in the plot are 
related to the presence o f friction between the balls 
and the tube and also to  the neglect o f  the finite size o f 
the balls and their surface roughness in  the calcula­
tions.

Now, let us analyze the d ependence o f  the elastic 
wave velocity on  the  wave am plitude for d ifferen t 
values o f the  static com pression  force. We consider 
a h arm o n ic  wave propagating  in  the  cha in  and  
assum e th a t the  wave am plitude h satisfies the  c o n ­
d itio n  h <  h0. T h en , Eq. (15) can  be rep resen ted  in  
the  form

Vgr = d -  = й ^  (h 0 + h ) 1/2 cos ( k a /2  )
d k  1 -  у ) m  (19)

= C( h + h 0) 1/4 = Ch0/4 (1 + s ) 1/4,

where C =  a —E ,Jr — cos(ka/2) and s =  (h /h 0) <  1. 
V( 1 -  v 2) M

Now, In  Eq. (19), we expand (1 +  s ) 1/4 in  a Taylor

w, x 103 rad/s 
200  г

160­

1 2 0 ­

8 0 ­

4 0 ­

0 100 200

F  = 1.96 N theory
------- F  = 3.92 N theory
------- F  = 7.84 N theory

■ F  = 1.96 N experiment
a F  = 3.92 N experiment 
•  F  = 7.84 N experimentj__________i__________i
300 400 500

k, 1/m

Fig. 5. Dispersion curves of the elastic wave in the chain for 
three different values of the compression force.

series and  restric t it to  term s quadratic  in  s. This 
yields

Vgr = I f  = C( h + h 0)1/4 = Ch1/4 (1 + s)1/4
= Ch0/4

' . Л  3 2 ■
1 + -  s ----- s + ...

4 32

(20)
Substituting h =  hms i n ( f ) ,  where hm is the acoustic 
wave am plitude, in Eq. (20) and applying the tim e 
averaging procedure, we obtain

< Vgr) = Ch 1/4' l  _  I f  hm

64 Vh0

2-i
0 (21)

F rom  Eq. (21), it follows th a t the  group velocity o f 
an  elastic wave in  the  ch a in  depends on  the  co n stan t 
com pression  value h0 and  is p ro p o rtio n a l to  the 
square o f  the  acoustic  wave am plitude hm. F or

hm — -  0, Vgr(hm — -  0) =  C h /4 . Taking AVgr(hm) =  
Vgr(hm — ► 0 ) -  < Vgr) , we obtain

A V „ (hm) = 2

VgrChm-— 0 ) 6)̂ 1 V̂ 0̂  .

In  the experim ent, we m easured the propagation 
tim e for the m axim um  o f the envelope o f the first 
transm itted pulse. As the am plitude at the radiating 
transducer increased, the m axim um  shifted leftward,
i.e., the velocity increased. The results o f  m easuring 
the relative velocity variation on  the voltage am plitude 
A  at the radiating transducer are shown in Fig. 6  for 
four different values o f the com pression force. The val­
ues o f the external static force F  were as follows: 0.98, 
1.96, 3.92, and 7.84 N . For weak com pression F  =
0.98 N , the dependence was quadratic: AV/V =  
0.0016A2 — 0.0143A. The ratio A V /V  increased up to
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AV/V, %

Fig. 6. Dependence of the relative velocity of the elastic wave 
on the wave amplitude for different values of the static force.

2.7% when the signal amplitude A  at the radiating transducer increased to 45 V. The quadratic depen­dence of the velocity on the voltage points to the pres­ence of a considerable cubic nonlinearity in the one­dimensional chain of balls.As the compression force increased, the depen­dence of the velocity on the wave amplitude became weaker: A V /V  = 0.0004A2 + 0.0065A; beginning with a force of ~4 N, the dependence became approximately linear and independent of the further increase in the compression force: A V /V  = 7 x 10A2 + 0.0072A «0.0072A. This experimental observation confirms the predicted decrease in the contact nonlinearity with increasing static force.CONCLUSIONSExperimental studies of the characteristic features of small-amplitude elastic wave propagation in a one­dimensional model of a periodic unconsolidated structure with Hertzian nonlinearity were carried out. The dependence of the group velocity of an elastic wave on its frequency was calculated and measured. The dispersion relations were calculated for different values of the compression force. The theoretical and experimental dependences were found to be in good agreement. The dependence of the elastic wave veloc­ity on the wave amplitude was measured for different values of the compression force. A quadratic depen­dence of the velocity of an elastic wave on its ampli­tude was observed, which points to the presence of a considerable cubic nonlinearity in the one-dimen­sional chain of balls. The results of the aforementioned studies suggest a conclusion that the elastic linear and nonlinear properties of the system under consider­ation may vary under the effect of an external force.
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