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Abstract—On the basis of the generalized variational principle for dissipative continuum mechanics, a sys-
tem of generalized Biot’s equations is derived to describe the wave propagation in a two-phase porous perme-
able medium in the presence of shear relaxation in the pore-filling fluid. It was shown that the inclusion of
shear viscoelasticity of the fluid leads to the appearance of two transverse modes in addition to two longitudi-
nal modes described by the Biot theory. One of the transverse modes is an acoustic mode, whereas the other
is a diffusion mode characterized by the linear frequency dependence of phase velocity and attenuation coef-

ficient in the low-frequency region.
DOI: 10.1134/81063771010040147

INTRODUCTION

Today, heavy oil is an object of special interest for
the oil industry. Heavy oil deposits exhibit a rheologi-
cal oil behavior, so that a correct description of the
rheological properties of heavy oil in a porous medium
is important for optimizing the methods of deposit
exploitation. The propagation of waves in porous per-
meable media is described by the Biot theory [1, 2]. Its
various aspects have been considered in numerous
publications (see, e.g., [3—5] and the literature cited
there). The Biot theory is based on the conventional
variational principle for nondissipative mechanical
systems. The fluid filling the pores of the skeleton is
considered as an ideal fluid. This description does not
take into account the rheological properties of actual
heavy oil, and, therefore, attempts were made to mod-
ify the original Biot theory. For example, in the last few
years, publications appeared wherein viscosity relax-
ation was taken into account by generalizing the Biot
operator for the dissipative function [6, 7]. However,
this approach is not completely adequate, because it
ignores the additional degree of freedom related to
shear elasticity of the viscous fluid. This degree of free-
dom could not be introduced in the conventional vari-
ational principle for nondissipative mechanics, which
lies at the heart of the Biot theory [1, 2]. Still, the nec-
essary generalizations can be obtained with the use of
the generalized variational principle for dissipative
mechanical systems.

In my previous publications [8—11], the general-
ized variational principle for dissipative continuum
mechanics was formulated as a simple combination of
the Hamilton and Onsager variational principles. The
generalized principle allows the derivation of the sys-
tem of equations for dissipative hydrodynamics. The

generalized variational principle can be formulated in
terms of the mechanical and temperature displace-
ment fields on the basis of the Lagrangian given in the
form [8—11]
t
L=K-F- dez,
0

where K and F are the kinetic and free energies and
D is the dissipative function.

In the present paper, the proposed generalized vari-
ational principle is used, firstly, for introduction of
shear viscosity in the equations of motion of single-
phase hydrodynamics and, secondly, to generalize the
Biot equations for a two-phase porous permeable
medium. Such a generalization is necessary for describ-
ing the behavior of heavy oil in a porous medium,
becouse heavy oils demonstrate elastic properties at
high frequencies.

1. THE INCLUSION OF SHEAR RELAXATION
FOR A SINGLE-PHASE FLUID

In the previous publications [8—11], it was shown
that, by introducing additional internal parameters in
the generalized principle by analogy with the Man-
delshtam—Leontovich approach [12], it is possible to
introduce the bulk viscosity in the equation of motion
of the fluid and even to describe its relaxation.

It is of interest to consider how the shear viscosity
is introduced in the equation of motion. In this con-
nection, it should be noted that the additional terms
that appear in the quadratic forms for free energy and
dissipative function and are related to a certain inter-
nal parameter & imply its that its nature is scalar
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nature. However, such an internal parameter can also
possess vector and tensor properties. In the last case
the additional terms, related to a tensor internal
parameter &, appear in the expression for the free
energy and it has the form

2PV 8) = pep Aoyt aky

2
+ay8; + 2b1& ey + 20,6 18

The kinetic energy is given by the conventional expres-
sion
2K(ti) = pou’, (1.2)

and the dissipative function in the absence of the tem-
perature component can be represented as

2D(Ey) = i+ b (1.3)

In the above expressions, u is the field of the mean

mass displacements of the medium, g; =

Ou; Ouy . . . .
l(—’ + —k) is the strain tensor, p, is the density of
2\0x;,  Ox;

the medium, and A and p are its Lame constants.

In this description, the viscous fluid is initially con-
sidered as an elastic medium. The temperature dis-
placement field, which is part of the generalized vari-
ational principle [8—11], is omitted for simplicity.

The system of equations of motion is obtained on
the basis of the generalized principle by varying the
action with the Lagrangian given above. In the case
under consideration, this system can be represented in
the form

doK_yoF _ oD

dtou  6Vu ou’
9D _OF _
0k 0%

In view of Eqgs. (1.1)—(1.3), the explicit form of the
equations is as follows:

pogtli — pAuU - (A + p)graddiv(u)

(1.4)
b d 6&:‘1« _
—bygrad§; — b= = 0,
0%,
dazz ék
J; =+ a,0,8,+ a5&;
Y1 kdt Yz a104E,+ arEy (1.5)

+ bISikdiVll + bzgik = O

Here, the first equation is the equation of motion, in
which, for simplicity, the tensor notation is left for the
vector that is obtained by taking the divergence of the
tensor internal parameter. The second equation is the
kinetic equation for the tensor internal parameter &;.

MAXIMOV

Convolving the kinetic equation by indices, we
obtain a separate kinetic equation for the spherical
part of the internal parameter tensor &

d
ya’i +a§ll+bsll = 0, (1.6)

where the coefficients marked with tilde have the form

?: 3YI+YZ7 a = 3al+a27 Z = 3b1+b2

The solution to Kinetic equation (1.6) is expressed by
the formula

t —

:(t )

=2 fe j ex(1)dr. (1.7
Y

For the remaining components of the internal param-
eter tensor &,,, we also obtain a kinetic equation of
form (1.6), with the only difference being that the
solution to kinetic equation (1.7) is added to the inho-
mogeneous terms:

g

ik
Yo— 7 +ayE + boey + a0 zkall+b16zkgll =0,

(1.8)

where

Y Y

Again, the solution to Eq. (1.8) has the a form analo-
gous to Eq. (1.7) with allowance for the additional

contributions of the terms with the factors @, and by.
This solution is as follows:

)

a,-k——— jdr b
(o= 1- (‘W—‘W)) (1.9)
bz (ay,—ayy)
b(alY ay,) ~(t 2

J-dt €.

(aY2 azY)

Taking the divergence of tensor (1.9), we obtain the
vector

6&!1{ J.dt 7Y_2(t ”
X

X G(Au +V(Vu)) - V(Vu)( ,i%))

(1.10)
b(af/ ayl J.dt ~(t t)V(Vll)
v(aw—azv)
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GENERALIZATION OF BIOT’S EQUATIONS

Substituting Egs. (1.10) and (1.7) in the first of
Eqgs. (1.4), we represent the latter as

po il — AU~ (0 + W)V(Vu)

ar
=2 (bl

——t )
(@) - "”Q J.dte V(Vu)
Y

(‘“/2 ayy

Rl

J‘dt Y2

« (%(Au +V(Vu))— V(Vu)(l ACIVP

D - aZYl)))
b, (ay,—ayy)

In the low-frequency limit, at a time exceeding the
relaxation time, i.e., > v /a and t > y,/a,, the main
contribution to the integrals is made by the vicinity of
the upper limit ' = ¢. Therefore, applying the corre-
sponding expansions, we obtain an equation analo-

gous to the Navier—Stokes equation with the shear
and bulk viscosities:

d. =~ S~ .
—u— pAu— (A + p)graddiv(u
Pt — (A+p) (u) (L)
= fAti + Cgraddivu,
where the effective elastic moduli and the shear and

bulk viscosity coefficients are expressed by the for-
mulas

- b,
W= M_Z_az’
_ )~ (1.12)
7\’ — 7\’ ﬁ_é(bl b (aly aYI))
2a, a (aY2 ayy)
= ~b ay—a
3 a (ay,—ayy
_yzb_z(b_z (aIYZ aZYl)) (1.13)
a% 2 (ay,—ayy)
7=y b
v,
2 a%

It is important to note that the structure of the
effective shear modulus [ involved in Eq. (1.12) is
determined by the difference that can be zero. In the
latter case, Eq. (1.11) becomes fully equivalent to the
linearized Navier—Stokes equation for viscous fluids.
For pn > 0, we obtain the case of an elastic body with
shear viscosity (the Voigt model) or with relaxation in
a more general case. Thus, in terms of a unite
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approach, it is possible to describe viscous fluids and
solid bodies with viscoelastic properties.

2. THE BIOT EQUATIONS
ON THE BASIS OF THE GENERALIZED
VARIATIONAL PRINCIPLE

Now, let us consider the derivation of the system of
motion equation for a two-phase porous permeable
medium on the basis of the generalized variational
principle. The temperature field component is ignored
by the Biot approach, and, therefore, the system con-
sidered below is assumed to be at a constant tempera-
ture. In terms of the Biot approach, a porous perme-
able medium is represented by two mutually penetrat-
ing continua describing the displacement fields of the
porous elastic skeleton u; and the fluid u,. According
to Biot [1], the kinetic energy of such a system is a pos-
itive definite quadratic form of velocities of these
fields:

2K(u) = Pn‘i% +2p Uty + Pzz‘i;- (2.1)

The free energy of the fluid without inclusion of
internal parameters is also represented by positively
determined quadratic form:

2F(Vu,, Vu,) = 2“118?1«"‘ kngzzz (2.2)
+ kzz(vuz)z + 208, Vuy,

where g is the strain tensor of the elastic medium.

The dissipative function also is a positive definite
quadratic form, which should be zero in the absence of
relative motion of the fluid and the porous medium:

2Dty i) = B, )" (2.3)

The equations of motion obtained on the basis of
the variational principle in the presence of two dis-
placement fields, u; and u,, are represented as

doK _\, oF _ 2D
dtow, oV, ou,’
doK o oF _ oD
dtow,  OVu, 6u2

With allowance for potentials (2.1)—(2.3), they take
the form

d. d .
—U; + pp,—U, — ;AU
Pndt 1 plzdt 2 — My Al (2.4)
— (Mg + pyy)graddivu, — Appgraddive, = —B(0; —u,),
d. d .
—u, + p;y,—U, — Apgraddiva
Pzzdt 2 plzdt 1 228 2 (2.5)
— KlzgraddiVlll = —B(ll2 — lll)

One can see that Eqgs. (2.4) and (2.5) are a complete
analog of the well-known Biot equations. This allows
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us to determine all the coefficients appearing in the
quadratic forms by the comparison with these equa-
tions. Indeed, Eqgs. (2.4) and (2.5) can be represented
in thea form that is conventional for the Biot theory:

puliy + pioti; + b(1, —1,) (2.4b)
= Pgraddiv(u,) + Qgraddiv(u,) — pcurlcurl(u,),

Pypliy + pyoliy + b(1, — 1)

(2.5b)
= Rgraddiv(u,) + Qgraddiv(u,),

where
P=2y+2up, O =hp R=1ky b=p. (26)

Therefore, relations known from the Biot theory
[5] can be used for the aforementioned quantities:

pPu = (l_m)ps+(a_1)mpfa
P12 = P = _(a_l)mpf:
Py = dmpy,

b = —-m'm/k, (2.7)

P=1+2u-2PMm+m’M,
Q = Mm(B_m)a
R=mM,

where p,and p; are the densities of the fluid and the
elastic skeleton, m is the porosity of the skeleton, 1 is
the viscosity of the fluid, & is the permeability coeffi-
cient, A and | are the Lame constants of the elastic

skeleton, M = pfc; is the elastic modulus of the fluid,

and ¢ is its sound velocity. The mean density of the
medium is given by the expression

p = (1—m)p,+mpy,

and, for the dimensionless coefficient responsible for
the attached mass effect, the approximate formula can

be used [5]:
a= l(l+ l).
2\m

According to [1], the system of equations (2.4),
(2.5) allows the existence of three independent modes
of motion: two longitudinal waves and one transverse
wave. Specifically, the transverse wave and one of the
longitudinal waves are acoustic modes in the low-fre-
quency limit, whereas the other longitudinal wave is a
diffusion mode in the low-frequency limit.

3. GENERALIZATION OF THE BIOT
EQUATIONS WITH ALLOWANCE
FOR SHEAR RELAXATION OF THE FLUID

Generalization of the Biot equations with allow-
ance for the relaxation characteristics of the fluid fill-
ing the pores is possible with the use of the approach
described in the first section of this paper. Again, for
simplicity and for direct comparison with the Biot the-
ory, let us consider the medium at a constant temper-
ature. When fluid relaxation is taken into account, the
kinetic energy retains its form (2.1), whereas addi-
tional terms appear in the expression for the free
energy due to introduction of the internal parameter
for the fluid. As it was mentioned above, when taking
into account shear relaxation, the fluid should initially
be considered as an elastic medium. In view of this
remark, let us represent the free energy in the general
quadratic form

2F(Vuy, Vuy, &)

2 2 2 2
= 2“11(831«) +7¥11(8111) +2H22(8i2k) +7¥22(8121)

(3.1)

1 2 12
+ 20808 + 22808
2 2 2
+a &+ ay +2bE ey
2b,E 6+ 2 ) .
+ 20, p&ri + 201848 + 205848

Here, S}k and sfk are the strain tensors of the elastic
skeleton and the fluid and &, is the tensor internal
parameter. The dissipative function includes the terms
due to both dissipation inside the viscous fluid and rel-
ative motion of the phases. It should be zero in the
state of thermodynamic equilibrium, when internal
macroscopic motions and relaxation processes are
absent:

L. g . . 22 :2
2Dty 1, i) = B —1h) +vi€u+mabi. (3.2)
It can be seen that, when the coefficients A5, 115, 3, and
p1, responsible for the interaction between the phases

are zero, the reduced potentials separately describe the
elastic medium and the viscous fluid with relaxation.

It is important to take into account shear relaxation
in the interaction of the phases. Therefore, below, to
simplify the formulas, we retain the terms containing
the parameter &;, and not its convolution &, by setting
a;=0,b,=0,¢,=0,and y; =0. For such asystem, the
equations of motion have the form

doK _y, oF _ 0D

dtow, oV, ou,’

doK _\, oF _ oD

dtow,  oVu, on,’
oD _or _
6%[1{ 6&1‘1{
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Substituting potentials (2.1), (3.1), and (3.2) in these
equations, we obtain

Pty + ppoliy — py Ay — pypAu

— (A u) VIV — (A + py) V(Vy) (3.3)
L 0¢,;
= B i) + 6,22,
X
Pty + pioliy — Hyp Al — iy, Auy
—(Ap+ up)V(Vuy) = (A + pyp) VIV (3.4)
* . 6 l
= Bl + b, 52
X
Yz%ik + a8+ bZSiZk + nggk = 0. (3.5)

As it was shown earlier, in the absence of elastic
relaxation in the fluid b, = 0 and in the elastic skeleton
¢, =0, Egs. (3.3) and (3.4) represent an analog of the
well-known Biot equations for two elastic continua. If,
in addition, we set ,, = 0 and 1, = 0, we obtain the
system of Biot equations for a porous medium filled
with a nonviscous fluid. As it was shown above, this
allows us to determine all the remaining coefficients
appearing in the quadratic forms by the direct compar-
ison of the equations.

Equation (3.5) is analogous to Eq. (1.6), and its
solution has the form

. PR

&= -1 e (biei(r)+ ce(r)ar
Yziw

Substituting this solution on the right-hand sides of
Egs. (3.3) and (3.4), we represent the latter equa-
tions as

Pty + pioliy — g Ay — pypAu
— (A1 + ) V(VU) = (A + 1) V(Vy)

Yziw
x (Uy(Auy + V(Vy)) + ¢,(Au; + V(Vuy))),
Pty + protll; — UpAlly — ppy Ay
—(An+ Hp)V(VIy) = (A + 1) V(Vuy)
Zr-r) (3.4b)

!
. . lbz v N2
= —Bu,—u)+=-=|dr
B, —iy) + 5:% [dre

x (hy(Auy + V(VUy)) + cy(Au; + V(Vu)))).

Thus, the system of equations (3.3b), (3.4b) is a
generalization of the system of Biot equations to the
ACOUSTICAL PHYSICS Vol. 55
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case wherein the fluid in the pores is a relaxing
medium.

Let us consider the consequences of this generali-
zation. It is possible to split the displacement fields u,
and u, into longitudinal and transverse components:

u; = grade, + curly,, u, = gradg, + curly,.

Then, we sequentially apply the operators div and curl
to Egs. (3.3b) and (3.4b) and, changing to the fre-
quency representation (f — ®), we show that the sca-
lar and vector displacement potentials satisfy to the
following system of equations:

2
¢
(kn + 21y — W)A(Pl
2
b,c
+ (7&12 + 2145~ W/%)A(pz
2

- ((DZPH +ioB)e; - ((szu +ioB)e,,

(3.52)

(3.5b)

- (032P12 —ioB)e; - ((DZPzz +ioB)e,,

2
1 c
(Hn — ém) curlcurly,

1 by
+(H12—‘ 22

— 3.6
2iooy2+a) V2 (3.6a)

= (0’py + 0P, + (0 p—ioB)Y,,

1 by
—-——=—<=Jcurlcurl
(Hu 2imy, + a) v

2

1 b
+(H22—‘—2

Yoy, T a) curlcurly, (3.6b)

= (032{312— iof)y; + ((DZPzz +ioB)y,.

Thus, the complete system of equations is split
onto two independent subsystems for the longitudinal
and vector potentials, which describe the propagation
of longitudinal and transverse waves, respectively.

If, in the field space, we introduce the vectors

(p:((Plj’ w:(\l’lj’
) v,

(3.7)
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the system of equations (3.5), (3.6) can be represented
in the form of two independent matrix equations,

AA@ + B = 0, Ccurlcurly — By = 0,  (3.8)
where the matrices ;1, j)’, and 6’ have the forms
2
c byc
N 7¥11+2M11—.—2 7¥12+2M12—#
A= i0y,+ a, iny,+a,
be b,
My + 2145 — - 22 7¥22+2M22——2
iny,+ a, iny,+ a,
R 2 . 2 .
B = o pp+iof o p,p-iof ’
2 . 2 .
0 pp—Iiof o'py+iof
1 C% 1 by,
R Ly — Sior+a. M Yev 14,
C = iny,+a, iny, + a,
A SO B
2 2ioy, + a, 2 2ioy, + a,

From the similar structure of Egs. (3.8) or (3.6) at
(3.7), one can see that, in the presence of viscoelastic-
ity of the fluid (as in the Biot theory), two transverse
modes can exist in addition to two longitudinal modes.

Indeed, each of the matrix equations (3.8) can be
diagonalized by linear transformation of variables. By
introducing a linear combination of the form 3 = ¢ +
€(,, it is possible to separate the first equation of
Eqgs. (3.8) into two independent Helmholtz equations:

AY, ,+ KL 5(©)9,, = 0, (3.9)

where the squares of the wave numbers are given by the
expressions

2 . 2 .
K[iz((ﬂ) — (0‘) p11+l(x)~B)+(XL2£(D plZ_IO‘)B) (310)
7\,11+OLL27\,12

and the following notations are introduced for brevity:

2

~ ¢

i = Agp + 20y — .—2,
iny,+ a,

- b

Mo = A+ 20— 262
iny,+a,

—~ b2

An = hyp+2Uy 2
iny,+a,

The parameter o , is the root of the quadratic equa-
tion

Ad’ + Ba+C = 0, (3.11)

MAXIMOV

in which the coefficients are determined as

A= dp+ o+ %(izzpu - 7:12[322)a
B= 7:11 - 7:22

+ %(7:22[311 + 7:12[312 - 7:11[312 - 7:12[322) )

C=- (7112 + 7:11) + %(7:12[311 - 7:11[312)-

In the low-frequency approximation, the first
terms in expansions of the roots of Eq. (3.11) by fre-
quency have the form

_7}11 + 7}12.
An+ A

o, =1, a,=

The corresponding wave numbers are expressed as

2
Kl%((o) _e Spn +~P12)’
A+ A

(3.12)

7~\,11 + 25\,12 + 7~\,22
Ao — Ay

From these expressions, it follows that, in the low-fre-
quency approximation, the first mode with wave num-
ber (3.12) is an acoustic mode, whereas the second
mode is a diffusion one. A similar behavior of longitu-
dinal modes is predicted by the Biot theory.

Now, let us determine the modes of transverse
waves being the splitting result of the second of
Egs. (3.8). Introducing the linear combination ¢ =
Y, + TVy,, we separate Eq. (3.8) in two independent

Helmholtz equations,

Ki(o) = iop (3.13)

curlcurlgl,z—Ksiz((o)gl,z =0, (3.14)

where the squares of the wave numbers are given by the
formula

((DZPH +iof)+ OLLZ((DZplZ —iop) (3.15)

2
Ksi ,(0) = = =
L2(0) Mg+ 0y ol

and the parameter o , is the root of quadratic equa-
tion (3.11) with the coefficients

4= 1122 + ljllz + @(ﬁzzplz - ljllzpzz)a

B
~ ~ l(X) ~ ~ ~ ~
B = —up+ E(Mzzpn + P2 — HiiP12 — MiaPn),
C=—(fp+py)+ %(ﬁlzpn — [Py
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GENERALIZATION OF BIOT’S EQUATIONS

Here,

2
H = Hn 1—62
n= -

2ioy,+a

v+ ay (16
. . 2ioy,+a, 2 2 2ioy, +a,

In the low-frequency approximation (as long as
I, and p,, remain finite at low frequencies), the first

terms in the expansions of the roots of Eq. (3.11) by
the frequency have the forms

_ljln + ljhz.
Moy + My

The corresponding wave numbers are

(Xl:l, A, =

Ksi(®) = (’M (3.17)
i+ By
2
Ksi(o) = BM- (3.18)

Mnljlzz M%z

Expressions (3.17) and (3.18) for the wave numbers
of the transverse modes have the forms similar to that
of the wave numbers of longitudinal waves (Egs. (3.12)
and (3.13)), and, in the general case, the transverse
modes should be expected to have the properties sim-
ilar to those of longitudinal modes. Specifically, at low
frequencies, one of the longitudinal modes (mode
(3.17)) should be an acoustic mode, whereas the other
{mode (3.18)) should be a diffusion mode.

However, it should be remembered that, when
describing the viscous fluid, we considered it as an
elastic medium with relaxation. To obtain a viscous
fluid from an elastic body, it is necessary to set

b, be
Hyy = ==, Hpp = 22_2 (3.19)
a,

In this case, the acoustic mode (3.17) remains
acoustic while the behavior of the diffusion mode is
qualitatively different. Indeed, in the low-frequency
limit, under conditions (3.19), we have

=~ _ 1, b, 1. bzcz
My = 1075 — le = iy, —*
2 a 2 @
2
2
ley 1. (bz 2
= — =+ i .
Hn M 2a, 2 Y2 a)

In this case, the roots of quadratic equation (3.11)
have the following asymptotics:

( 14
M1 32 a%

i0Y,/2  by(by+ Cz).

(X‘Z:_
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Then, for the wave number given by Eq. (3.17), we
obtain the expression

® (Pn +P12)

Ksi(w) = —HFL=ER (3.17b)
u 1
117 5375
and, instead of Eq. (3.18), we obtain
2 .
KS%(Q)) = E(a_? +1 l(’g
YyNb 2( _1c_2) b,
M b +ve,  (3.18b)

0 L 2
«(B+ 2_12( 19y ).
(B Y2 H 2ay by(by+ ¢,

From Eq. (3.18b), it formally follows that the second
transverse mode also appears to be a diffusion mode
with a phase velocity dispersion linear in frequency:

en(®) = oofz”z
2

which value depends on the ratio of the dissipative fac-
tors v, and B. The attenuation coefficient also is linear

in frequency:
1 b
(o) = Jo [B(2)
4 Nv,N\a

2
Plz( 1¢, a,
+2 —_
(B Y2 Hi™ Za) by(by + C2)>
- .

lc b
(Hn—‘—z 2
2a/ by + ¢,

It should be noted that, if the dissipation coeffi-
cient [} is set to be zero with the dissipative function
being determined by the relaxation term alone, from
Eq. (3.21) we obtain that the second shear mode again
appears to be a diffusion mode with the square of the
wave number

Ksz(oo) = loopua2
12 b2

which value is determined by ratio between the param-
eter p;, related to the attached mass and the dissipa-
tion factor y,.

CONCLUSIONS

It is shown in the paper, that natural introduction
of shear viscosity in the hydrodynamic equations sys-
tem can be achieved in the framework of the general-
ized variational principle by the introduction of the
tensor internal parameter into the expressions for the
free energy and dissipative function, in accordance
with the Mandelshtam-Leontovich approach. In
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terms of other variational approaches, the introduc-
tion of shear viscosity usually causes difficulties. The
proposed method allows generalization of the
Navier—Stokes equation with allowance for viscosity
relaxation and, hence, makes it possible to obtain a
combined description of the inelastic behavior of vis-
cous fluids and solids.

It should be noted that, since the bulk and shear
viscosities are physical characteristics common to flu-
ids and gases, the physical meaning of the internal
parameter used for description of these properties
should also be common for fluids and gases. There-
fore, as the internal parameter, we can take only the
most general structural characteristics of the medium,
such as, e.g., the mean positions of atoms or molecules
of the medium with respect to each other in the ther-
modynamic equilibrium state. The reducing of the
mean distance between atoms and molecules should
be related to volume relaxation and, hence, to bulk
viscosity, while the reducing of spatial (angular) equi-
librium at every point of the medium should be related
to shear relaxation and, hence, shear viscosity. Thus,
the tensor internal parameter introduced in this paper
is of kinetic origin and can be associated with the order
parameter, which is commonly used in the theory of
phase transitions.

It was shown that the conventional system of Biot
equations for a two-phase porous permeable medium
can be immediately obtained on the basis of the gener-
alized variational principle. However, if we take into
account the additional degree of freedom related to
the presence of transverse waves in the viscous fluid,
the generalized variational principle will allow us to
derive the system of equations of motion that general-
ize the system of Biot equations with allowance for this
additional shear degree of freedom. It should be
stressed that, in terms of the existing variational prin-
ciple for nondissipative continuum mechanics, which
underlies the Biot theory, the shear degree of freedom
cannot be taken into account because of its fundamen-
tally dissipative nature.

It was also shown that, with allowance for the shear
viscoelasticity of the fluid, not only two longitudinal
modes can exist, as in the Biot theory, but also two
transversal modes can be exist in the medium as well.

MAXIMOV

One of the transverse modes is an acoustic mode,
whereas the other proves to be a diffusion mode with
the phase velocity and the attenuation coefficient lin-
early depending on frequency in the low-frequency
region.
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