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Abstract— We examine a two-dimensional model problem of architectural acoustics on sound propagation 
in a rectangular room with windows. It is supposed that the walls are ideally flat and hard; the windows absorb 
all energy that falls upon them. We search for the modes of such a room having minimal attenuation indices, 
which have the expressed structure of billiard trajectories. The main attenuation mechanism for such modes 
is diffraction at the edges of the windows. We construct estimates for the attenuation indices of the given 
modes based on the solution to the Weinstein problem. We formulate diffraction problems similar to the state
ment of the Weinstein problem that describe the attenuation of billiard modes in complex situations.
DOI: 10.1134/S1063771010040184

IN T R O D U C T IO N

O ne o f the fundam ental problem s in  architectural 
acoustics is estim ating the reverberation tim e o f  a 
room . T he oldest and m ost popular approach is the 
Sabine form ula [1], w hich is based on the supposition 
o f a diffuse character o f  the sound field in  the room . 
Clearly, the field assumes a diffuse character owing to 
the com plex form  o f the room  or diffuse reflection 
from  wall coatings. In  the present study, we examine 
the opposite case. We suppose tha t the walls are ideally 
flat and hard; the room  geom etry is chosen as rectan 
gular. T he only elem ent m aking the problem  nontriv
ial is the windows. In  an  exact form ulation o f the p rob 
lem , we suppose tha t the walls are rigid borders o f a 
certain  rectangular area in  an  infinite space. T he w in
dows are obtained by removing certain  areas o f the 
boundary. A n acoustic wave is diffracted on  the w in
dows, and its energy is carried away into open space. 
Such an  exact form ulation will be replaced below by a 
simplified one, which, however, does no t qualitatively 
change the results. For simplicity, we consider a two
dim ensional m odel problem .

N o te  th a t the case o f a rectangular geom etry and 
well-reflecting walls is n o t rare for architectural acous
tics. This refers to all typical room s w ithout special 
partitioning. Windows can  be apertures in  the walls, as 
well as perfectly m atching absorbing elem ents [2 ].

T he described system  is an  open resonator. We 
search for the eigenm odes o f this resonator, i.e., the 
expression for the field w ith in  the limits o f  the room , 
as well as for the resonance frequencies. We suppose 
that the field o f each m ode has a dependence on tim e in 
the  form  o f exp{—i®/}, w here resonance frequency ю,

is a com plex quantity: ю =  ю, — i ю ,'. T he im aginary 

part ю , corresponds to m ode attenuation.

We consider the high-frequency approxim ation; 
that is, we suppose tha t ю' >  c /L , w here c is the speed 
o f sound and L  is the characteristic dim ension o f the 
room . We assign a sufficiently large actual value ю0 and 
search for the m ode w ith  ю' ~ ю0. As well, we are only 
interested in  the m ode w ith sm all values ю'', i.e., 
m odes w ith  sm all attenuation.

We define the concept o f small attenuation. Let the 
area occupied by the resonator (in the tw o-dim en
sional m odel, it plays the role o f the room ’s volum e) be 
equal to  S; the entire perim eter o f  the room , equal to 
P ; and the to tal length o f the cutoffs/w indows, equal 
to P '. U nder the supposition o f diffuse character o f  the 
field, the m ean frequency o f sound particle collision in 
the boundaries o f the rectangle can  be estim ated as

cP  
n S

T he frequency o f collisions w ith windows is

P' cP  _  cP- 
P n S  _ n S '

( 1)

T he m ean lifetim e o f a sound particle can  be estim ated 
as (a ') -1; this m eans tha t a ' is the estim ate o f the a tten 
uation  index w hen the field has a diffuse character. We 
are interested in  m odes tha t have

ю'' <  a ';

i.e., they have an  attenuation  index th a t is substantially 
less th an  the given estim ate. Obviously, such m odes
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Fig. 1. Geometry of the studied resonators.
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Fig. 2. Walls of the room (derivation of the boundary inte
gral equation).

m ake the fundam ental contribution to a steady-state 
field and to the reverberation process.

STATEM ENT O F T H E  PRO BLEM

In the given paper, we consider two room s (room  A 
and room  B) the geom etry of w hich is shown in Fig. 1. 
R oom  A has two windows, and room  B has one w in
dow. Below we show that, owing to differing geometry, 
these room s belong to  different classes and the struc
ture o f their eigenm odes differs.

The dim ensions o f these two room s are Lx x Ly. The 
widths o f the windows for room  A are Wx and Wy. The 
w idth o f the single window in room  B is Wy. The walls 
o f the room  have a small but finite thickness (Fig. 2). 
O n the walls, the N eum ann  boundary conditions are 
assigned. In  the free space, the H elm holtz equation is 
fulfilled:

2
A u + — u = 0 .2c

It is necessary to include in the statem ent o f the prob
lem  the condition  o f radiation at infinity and the 
M eixner conditions at corner points. These conditions 
have a standard form, and we do no t give them  here.

To num erically solve the problem , we use the 
boundary integral equation in the so-called direct for
m ulation [3]. Namely, the G reen ’s form ula is used, 
w hich expresses the value o f the field in the air and on 
the boundary by m eans o f its value on  the boundary in 
the following way:

c ( r) u ( r )

= J  [G(r, r ')d n■ u (r ' ) -  u (r')3„■ G(r, r ') ]dl', 

г + r ,

where r is the radius vector o f a poin t in the air or at the 
boundary; r ' =  r '(l) is the radius vector o f a poin t on

the boundary; G is the G reen ’s function o f an infinite 
plane,

G( r, r ’) = G( |r  -  r 'I) = -f& O 1}( |И a / c); (3)

c(r) is a coefficient w ith a value o f 1 in air, 1 /2  on  
sm ooth areas o f the boundary, and а / ( 2 я) at corner 
points (see Fig. 2). D ue to  the boundary conditions, 
the first elem ent under integral (2) is zero. C onsider
ing only points on the boundary, we obtain the bound
ary integral equation

2 c ( l) u ( l) = J  K( l, l ') u ( l ') dl',

г + Г1

K ( l, Г) = - 2 dn.G( |r( l) -  r( Г) | ) .

(4)

N ote that the factor 2c(l) is unequal to unity only at 
corner points. To simplify calculations, we m ake one 
m ore approxim ation. The boundary o f the area occu
pied by the wall consists o f two parts, Г and Г ь In  cal
culations the contribution to  the integral relating to 
area Г t was neglected; that is, in Eq. (4), variables l and 
l ' only ran through points related only to area Г. This 
approxim ation is justified because the field on  the 
external surface o f the boundary is small everywhere 
w ith the exception o f the edges o f the window, where 
the diffraction field is generated. H ere we ignore subtle 
details o f the diffraction process. N ote that diffraction 
is the m ain  a ttenuation  m echanism  o f the considered 
m odes; however, Fresnel diffraction is o f interest: wave 
scattering under angles close to th a t o f m irror reflec
tion. As well, the dim ension o f the zone near the edge 
o f the scatter responsible for diffraction is approxi

m ately ~ J L X ; that is, this is the dim ension o f the first 
Fresnel zone. Here, L  is the characteristic dim ension 
o f the room  and X is the wavelength. O ur approxim a
tion  consists in ignoring a zone on the order o f X on  the

external side o f the boundary. Com paring J T X  and X, 
we arrive at the conclusion that the ignored contribu
tions are not large. The given sim plification, o f course,
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strongly influences the scattering o f rays at large angles 
(it influences Keller diffraction), bu t has alm ost no 
effect on Fresnel diffraction.

O perator K  depends on ю as on a param eter. O ur 
goal is to  choose this param eter in such a way that 
unity belongs to the spectrum  o f the given operator. 
D iscretization is perform ed using the m ethod o f 
boundary elem ents, the given operator is approxi
m ated as m atrix K , and

det(K - 1) = 0 (5)

becom es the criteria for solving Eq. (5).

If  (5) is satisfied, then  m atrix K  — 1 has an eigen
vector that represents a set o f eigenm ode values in the 
m esh nodes given on  the internal surface o f the bound
ary. The m ode inside the room  can  then  be restored 
according to be boundary values w ith the help o f for
m ula (2). It is precisely this schem e that we will follow 
in carrying out the num erical experim ent.

P R E L IM IN A R Y  ANALYSIS:
VIRTUAL RESONATORS

We will exam ine families o f rays describing closed 
billiard trajectories in a rectangular room  w ithout 
w indows (see Fig. 3). E ach such trajectory  is ch a rac
terized by a pair o f a m utually  sim ple nonnegative 
integers (M, N). As well, the angles at w hich the rays 
propagate along the x  axis are

a , - a ,  n -  a , n  + a ,

where

tan  a  =
N L y 
M L X •

It is easy to check that the length o f each closed tra 
jectory  is

DM, n = 2 j  ( M L X) 2 + ( NLy )2.

We will call the pair o f simple nonnegative whole n u m 
bers (M, N) in the resonator the rational direction.

We re tu rn  to  th e  room  w ith  windows. We c o n 
sider a fam ily o f  rays correspond ing  to  ra tiona l 
d irec tio n  (M, N ). Each ray is reflected from the walls 
several times. If  at least one act o f reflection occurs on 
the window, the ray loses its energy and cannot partic
ipate in generating a high-quality m ode. We call this a 
disappearing ray. If  only disappearing rays correspond to 
a certain rational direction, we also say that this direc
tion is disappearing. On the other hand, if nondisap
pearing rays correspond to  a certain rational direction, 
we call this direction nondisappearing. In  this way, all 
rational directions are divided into two classes.

Families o f rays (that is, beams) that generate b il
liard trajectories correspond to  nondisappearing 
directions. H igh-frequency waveguide m odes corre

Fig. 3. Billiard trajectories in a room without windows.

spond to  these families. Consequently, every nondis
appearing direction represents a virtual resonator, the 
m ode structure in w hich we will study below. Such an 
approach corresponds to the concept o f a m ultim irror 
resonator [4].

The room  can have a finite or infinite num ber o f 
nondisappearing rational directions. The m ain  differ
ence between room s A and B, depicted in Fig. 1, is 
precisely th a t room  A has a finite num ber and room  B 
has an infinite num ber o f such directions. If  Wx > LX/3  
and Wy > Ly/3 , for room  A, only the directions

(0 , 1), ( 1 ,0 ), ( 1 , 1) 

are nondisappearing.
As well, if Wy > Ly/2 , then  for room  B, the d irec

tions

(0 , 1), (n ,1), n =  0 , 1 , 2 ... 

are nondisappearing.
If  there is an  infinite num ber o f nondisappearing 

rational directions, then  there exists a lim it point, that 
is, a d irection (in our case necessarily rational) in any 
neighborhood o f w hich there is an  unlim ited  num ber 
o f nondisappearing directions. Below we show that the 
existence o f a lim it poin t com plicates the m ode struc
ture in the room .

FA B R Y -PE R O T -T Y PE  M O D ES

We clarify the m ode structure, which represents a 
set o f nondisappearing billiard trajectories in a virtual 
resonator. We fix the nondisappearing direction. Let 
for sim plicity the direction be no t parallel to  the walls; 
i.e., M  ф 0 and N  ф 0. For the given family o f rays we 
apply the reflection m ethod. We reflect the room  rela
tive to its walls and do the same w ith the obtained 
reflections, etc. We suppose that the walls are ideally 
hard; therefore, we can consider that a ray does no t see 
the walls and crosses into the nex t-in -tu rn  “world

ACOUSTICAL PHYSICS Vol. 55 No. 4 2010



528 SHABALINA et al.

Fig. 4. Application of the reflection method to a nondisap
pearing family of rays.

beyond the m irro r” w ithout distortion. As well, as it 
hits a w indow (or their reflections), the ray is fully 
absorbed. In  this way, there are no walls in the co n 
structed system o f reflections and the windows are ide
ally absorbing screens (see Fig. 4).

As a result o f  using the reflection m ethod, each vir
tual resonator described in the preceding section 
becom es a waveguide like an  aperture line. As well, the 
beam  crossing through the aperture line should satisfy 
the periodicity condition. Namely, the field in cross 
sections along length D, determ ined like (10), should 
be identical (in Fig. 3, these are cross sections I and II). 
We will suppose that the beam  width, determ ined by 
the geom etry o f the aperture line, is H.

The problem  o f the aperture-line-type waveguide 
arises naturally in studying the classic problem  of 
m odes in a Fabry—Perot resonator. Let there be a two
dim ensional acoustic resonator consisting o f two ide
ally hard  plane-parallel m irrors o f w idth H. Let the

distance between the m irrors be D /2  (see Fig. 5). We 
apply the reflection m ethod  to  the given problem . As a 
result, the resonator becom es an  aperture-line-type 
waveguide. For the field in such a waveguide to  corre
spond to  the field in the initial resonator, it is necessary 
that it satisfy the periodicity condition  at length D .

Logically, in  the given statem ent o f the problem , 
extensions o f the m irrors cannot be replaced by ideally 
absorbing screens. As well, it is necessary to take into 
consideration the structure o f the edges o f the mirrors. 
However, it is know n that in the case o f short waves, as 
well as o f predom inantly  norm al (relative to  the m ir
rors) propagation o f the beam , the field in the resona
to r is well described by the parabolic equation [5, 6 , 7]. 
For instance, such an approach is equivalent to  the 
classical F o x -L ee  integral equation. In  writing such 
integral equations, we simply ignore the field at exten
sions o f the m irrors, which corresponds to ideally 
absorbing screens.

T he aperture line depicted  in Fig. 5, in  the general 
case, differs from  aperture lines ob tained  from  virtual 
resonators. The following features are characteristic 
o f  it:

— it has exactly two pairs o f absorbing screens per 
period;

— screens on different sides o f the beam  are situ
ated on a straight line;

— the screens are situated along the norm al to  the 
beam  axis.

In  analyzing virtual resonators, aperture lines are 
obtained that can have a different num ber o f screens 
from different sides o f the beam. In  addition, they do 
not have to  be situated along the norm al to  the axis. To 
obtain estim ates, we simplify the task, considering 
screens to be located along the norm al to  the axis o f 
the waveguide and retaining the position o f the edges 
o f the screens (see Fig. 6 ). N ote that diffraction on a 
system o f inclined (reflecting, but no t absorbing)

Fabry—Perot
resonator

Aperture line

Reflecting
screens Absorbing screens

Fig. 5. Aperture line for a Fabry—Perot resonator.
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of the absorbing screens Delineation of the boundaries
of unilateral aperture lines

Fig. 6 . Continuous simplification of the problem on the aperture line for a virtual resonator.

screens was studied in [8 ]. F urther sim plification co n 
sists in studying systems o f screens on  different sides o f 
the beam  independently  o f each other. As well, we cal
culate the coefficient o f reflection o f a plane wave fall
ing at a small angle from  a unilateral aperture line. 
Scattering in to  higher m odes is ignored (the respective 
coefficients are small), and it is possible to  consider 
that there is a plane wave undergoing reflection from 
two boundaries o f unilateral aperture lines. These 
boundaries have a reflection coefficient close to  —1 . 
The exact value o f the reflection coefficient for a line 
w ith periodically situated screens is determ ined by the 
m ethod developed by L.A. W einstein [5]. C orrections 
to  the reflection coefficient m ake it possible to esti
m ate the quality o f m odes in virtual resonators.

The condition where scattering on two systems o f 
screens can be considered independently  reduces to 
the dim ension o f the first Fresnel zone being m uch

sm aller than  the beam  width: J D/ k 0 ^  H. This is 
equivalent to  condition (8 ) for the first o f the m odes 
exam ined below.

Thus, we apply the W einstein m ethod if (a) with 
every side o f the resonator the screens are situated at 
equal distances along the axis (these periods are p rob
ably different to  the right and left o f the beam ); (b) the 
angle between the norm al to the surface o f the w in
dows and the beam  axis is no t close to  n / 2  (that is, the 
absorbing screens are no t parallel to the axis o f the

aperture line); (c) the inequality J D/ к 0 <  H is satis
fied. If  condition (a) o r (b) is not m et, it is necessary to  
solve one o f the new diffraction problem s form ulated 
below.

We introduce coordinate E, along the beam  and 
coordinate n across the beam . We will consider sets n 
=  0 and n =  H. We will search for the field in the form  
of

u = a exp {i (к  ̂E, + kn n )}  + b exp {i (к  ̂E, -  kn n ) } , (6 )

i.e., in the form  o f the sum  o f two plane waves. We 
introduce the angle

sin 0 = - kn . (7)

v ki + k n
This is the angle between the direction o f propaga

tion  o f the plane waves and the beam  axis. The given 
angle should be small. It is known that the condition o f 
applicability o f the waveguide approach is

p <  1 , (8 )

p = 0 jk 0 D , (9)

where k0 =  ю0/с  (see [5] and [9]).
The key result o f the W einstein theory for our case 

is as follows. In  satisfying conditions k 0D >  1, k 0H >  1 
and (8 ), it is possible to  consider th a t plane waves (6 ) 
are reflected from the boundaries o f the aperture line 
alm ost like from the boundary with the D irichlet co n 
dition, i.e.,

a = R 1 b , b = R  2 a exp {2 ik n H },

w ith R 1 »  —1 and R2 »  —1. The given result is nontriv
ial, and there is no simple explanation for it. Techni
cally, W einstein obtained it as a result o f solving the 
problem  o f radiation from the open end o f a plane 
waveguide. He used the W iener—H opf m ethod [10].

Reflection coefficients R 1, R 2 differ from  —1 in the 
first order o f p. C orrections to  the reflection coeffi
cients determ ine the m ode attenuation  in  the aperture 
line and, in the final analysis, m ake it possible to  cal
culate the attenuation  index o f the corresponding 
m ode in a virtual resonator.

Before anything else, we determ ine the structure o f 
m odes on  the given aperture line. N eglecting correc
tions to reflection coefficients, we find that the m odes 
have a transversal structure characteristic o f a resona
to r w ith a soft boundary:

u (E, n )  = sin (nj n / H ) ex p {ik %E } , ( 10)
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w here j  = 1, 2, 3, ... is the transversal index o f the 
m ode. In  this way,

k  -  П
n H ( 11 )

T he longitudinal wave num ber is determ ined from  the 
periodicity  condition:

exp { ik . D } = 1 , ( 12 )

i.e.,

k  =
2 n r
D

(13)

w here r =  0 , 1 , 2 , . is the longitudinal m ode index. 
Thus, each F abry -P ero t-type  m ode in  the room  is 
defined by the rational direction (i.e., by the virtual 
resonator to w hich this m ode belongs), the transversal 
index j ,  and longitudinal index r. V irtual resonators 
w ith  a large H  correspond to high-quality  m odes. In  
addition, h igh-quality  m odes correspond to small val
ues o f index j  and large values o f index r.

N o te  tha t equality (13) is exact, since the period ic
ity condition  does n o t depend on the properties o f the 
aperture line, bu t equality (11) is approxim ate. C or
rections to the reflection coefficients lead to the 
appearance o f a negative im aginary addition in  k^. The 
value o f kn is determ ined from  the relationship

R x R2exp {2 ik n H } = 1, (14)

w hich gives

k  = к -  ln( - R i) -i- ln( - R 2) 
n H  2 iH  '

Taking into accoun t tha t к . +  к 2ц =  ю2/с 2 and k q >  
|kn |, we obtain the final form ula for the m ode a ttenua
tion  index:

. 2
ю'' -  - j -  Re [ ln ( - R 1) + ln (- R 2)]. (15)

2 H  ю'

N ote  tha t consideration o f the im aginary part in  (15) 
makes it possible to find the small diffraction correc
tion  to the eigenm ode frequency; however, this ques
tion  is o f  no practical interest.

It is difficult to calculate l n ( - R 1 2). We can  perform  
these calculations in  a singular case, w hen ideally 
absorbing screens are situated at identical distances 
along the aperture line. In  this case (see [5])

ln (- R  ) -
0.824(1 -OV-dk^

Jh
(16)

w here d  is the period at w hich screens appear along 
axis £,. T he m ost typical cases include d  =  D  (as shown 
in  Fig. 4) and d  =  D /2.

In  order to consider the rem aining cases o f interest 
(they are listed below), it is necessary to solve the co r

responding very com plex diffraction problem . U nfo r
tunately, a t present, solutions to these problem s are 
unknown.

We will now sum m arize the results o f  this section. 
To each virtual resonator a t sufficiently high frequen
cies there corresponds a family o f m odes indexed by 
two param eters: longitudinal index r  and transversal 
index j .  T he m ode represents a narrow  beam  o f waves 
continuously reflected from  the walls and having a 
closed trajectory. T he beam  structu re is close to (10). 
T he longitud inal wave num ber is determ ined  from  
period ic ity  cond ition  ( 12 ), and the transversal wave 
num ber, from  condition  (14). T he m ode attenuation  
index is calculated by form ulas (15), (16). T he cond i
tion  o f validity o f (15) is inequality (8 ).

N ote  th a t in  accordance w ith (11), it is possible to 
rewrite condition  (8 ) in  a form  tha t includes only the 
param eters o f the virtual resonator:

22
n]—  <  1. (17)
H 2 ю

W hen j  =  1, it is possible to in terprete condition  (17) 
from  the view point o f  elem entary diffraction theory.

Namely, it is possible to rewrite it in  the form  J W k  <  H, 
w hich m eans that each scatterer o f the aperture line is 
located in  the near zone o f the preceding diffuser.

N U M E R IC A L  E X PE R IM E N T
In this section, we num erically check the estim ates 

m ade in  the preceding section. We do this in  the fol
lowing way. We exam ine integral equation (3) w ith a 
kernel depending on  ю. We solve the problem  o f 
searching for com plex values ю lying near a certain  
fixed ю0; tha t these values Eq. (3) has a nontrivial solu
tion. E quation (3) is discretized, after w hich the co n 
dition o f the existence o f a nontrivial vector o f solu
tions is w ritten in  m atrix form  (5). This relationship 
represents an  (transcendental) equation relative to 
param eter ю. T he given equation is solved by iteration. 
For the curren t value ю, we calculate the eigenvalue o f
the m atrix  K  closest to 1; we calculate the correction 
to ю by its deviation from  unity, after w hich we repeat 
the process un til the required accuracy is achieved. 
Afterwards, we calculate the eigenvector correspond
ing to a single eigenvalue and w ith the help o f the 
G reen ’s form ula, the field in  the room  is restored.

We discretize Eq. 3 in  the following way. B oundary 
Г is divided into small areas (boundary elem ents) at 
each o f w hich a node is chosen. O n the boundary ele
m ents, an  u nknown function is approxim ated over the 
node values as a piecew ise-constant function. After 
this, we w rite Eq. (3) relative to the nodes.

In  the discretization o f Eq. (3), we take into 
account the fact tha t the field m ay possess peculiarities 
near corner- and endpoints. As well, in  our case, the 
field at co rner points is regular and at endpoints it can
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Table 1. R e s u l t s  o f  n u m e r i c a l  e x p e r i m e n t  f o r  r o o m  A

( M ,  N ) j в k ” ,  m - 1 H ,  m d1,  m d 2 ,  m k " ,  m  1 t h e o r .

( 1 ,  0 ) 1 0 . 5 0 . 0 0 4 2 3 6 0 . 0 0 3 8

2 1 . 0 0 . 0 1 3 0 . 0 1 5 5

3 1 . 5 0 . 0 2 8 0 . 0 3 5 6

4 2 . 0 0 . 0 5 3 0 . 0 6 5 8

( 1 ,  1 ) 1 0 . 6 0 . 0 0 5 2 1 1 . 6 1 1 . 6 0 . 0 0 6

2 1 . 3 0 . 0 2 4 0 . 0 2 4

3 1 . 9 0 . 0 4 9 0 . 0 5 7

( 0 ,  1 ) 1 1 . 3 0 . 0 1 8 1 5 1 0 0 . 0 3 3

have a radical singularity. In  order to retain  accuracy in  
calculations, we apply a standard m ethod: densening 
o f the m esh close to corner- and endpoints. Along 
w ith the correct description o f the features o f the field, 
this m ethod  makes it possible, w ithout substantial loss 
in  accuracy, to suppose a coefficient 2c everywhere 
equal to unity.

In  this section, for convenience, we used a wave 
num ber o f k  =  ю/c  instead o f circular frequency ю. 
Correspondingly, the initial value of the wave num ber 
is k0, and its real and im aginary parts are designated k  
and —к".

T he rational direction is designated w ith  the help o f 
indices M  and N  in troduced earlier; i.e., each F ab ry - 
Perot-like m ode is designated by a group o f four whole 
num bers including the direction, the transversal 
index, and the longitudinal index. As a result o f  solving 
the posed problem , for each rational direction and 
transversal index, it is possible to find a family of 
m odes w ith longitudinal indices close to r  =  Dk0/ ( 2 n). 
All of these m odes have very close attenuation  indices 
and a similar field distribution. Therefore, from  each 
such family we retain  only one representative and do 
no t show the longitudinal index.

Table 1 shows the results for room  A. T he following 
param eters were chosen for the calculations:

L x = 3 m, L y = 5 m, k0 = 62 m -1,

Wx = 2 m , Wy = 3 m.

T he choice o f k0 corresponds to a wavelength o f 0 .1 m  
and is determ ined by our com puting capabilities. 
R ecall that the iteration procedure requires m ultiple
construction  o f m atrix  K  and calculation o f its eigen- 
num bers.

T he construc ted  m odes can  easily be visually 
classified. T he results o f  this classification are show n 
in  the table. T he first co lum n  is the ra tiona l d irec tion  
to w hich  the  m ode refers. T he second co lum n  is the 
transversal index. T he th ird  co lu m n  is the  estim ate

o f  p aram ete r p by fo rm ula (9). T he fo u rth  co lu m n  is 
the m ain  resu lt of the  n u m erica l experim ent. This 
is the im aginary  p a rt of the  wave num ber co n n ected  
w ith  the  a tten u a tio n  index  o f  th e  m ode by the  fo r
m ula ю'' =  k 'c .

T he fifth  th rough  eigh th  colum ns refer to th eo 
re tical estim ates. Param eters H , d 1, and  d2 are the  
beam  apertu re  and  the  periods of screens following 
on the  boundaries o f  the  beam . T hey  are d e term ined 
from  the  room  geometry. T he eighth  p aram ete r is the 
estim ate k" by form ula (15). Taking in to  accoun t 
th a t p aram ete r p does n o t anyw here dip sufficiently 
low, co rrespondence betw een estim ates and  n u m eri
cal results can  be considered  satisfactory. N o te  tha t 
only d irec tion  ( 1 , 1) refers to the  type th a t can  be ca l
cu lated  w ith  th e  W einstein theory. T he beam s o f  the 
rem ain ing  two directions p ropagate partia lly  along 
the screens located  at the boundary  of the beam s. 
E xact d e term in a tio n  of the  a tten u a tio n  indices of 
these m odes requires the  so lu tion  o f  a new  d iffrac
tion  problem .

A n im portan t param eter o f  room  A is estim ate k" 
m ade under the supposition of diffuse field ( 1):

. . .  . P
k«  = c a  = n s

In  our case, k f  ~ 0.1 m -1. Clearly, m any o f  the m odes 
obtained as a result of num erical experim ent have 
quite a h igh quality in  com parison to this estimate.

Figures 7 and 8 depict the character o f the field in  
the eigenmodes. T he given distributions have been 
obtained as a result of restoring the m ode by the 
G reen ’s formula. T he figures are a con tou r represen
tation  o f a tw o-dim ensional function— the squared 
value of the field; these representations were done at 
a level o f  0 .1  o f  the m axim al value.

T he num erical experim ent for room  B was co n 
ducted w ith  the following param eter values:

L x =  3 m , L y =  5 m , k0 =  62 m -1, Wy =  3 m.
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Fig. 7. Modes of room A. Directions (1,0), (1,1), (0,1); transversal index j  = 1.

Fig. 8. Modes of room A. Directions (1,0), (1,1), transversal index j  = 2.

Part o f the m odes were classified as Fabry—Perot 
m odes. The data on these m odes are given in Table 2. 
The geom etry o f virtual resonators (1,1) and (1,2) co r
responds to  the aperture line exam ined above. The 
geom etry o f resonator ( 1 , 1) also corresponds to  the 
aperture line if we consider it together w ith a geom et
rical reflection in the wall o f y  =  0. Because o f this it 
makes sense to exam ine only the odd (sym m etrical) 
m odes in such a resonator. We consider virtual resona
to r (0 , 1) along w ith its reflection in the wall o f a =  0 ,

but its geom etry is m ore complex. At the beam  bound
ary x  =  Lx parallel to  the beam  axis, there is a wall. 
Such a beam  is no t described by form ula (15) 
(although, as the num erical experim ent shows, this 
form ula gives a fairly good estim ate o f attenuation). 
C ertain m odes o f room  B, listed in Table 2, are shown 
in Fig. 9.

In  contrast to room  A, where the num erical exper
im ent showed only F ab ry -P ero t-type  m odes, room  B 
has m ore com plex m odes. Some o f these are shown in
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Fig. 9. Modes (0,1), j  = 3; (1,0), j  = 3; (1,2), j  = 1.

Fig. 10. T hese m odes have a tte n u a tio n  ind ices th a t are 
significantly  low er th a n  th e  d iffusion estim ate  k" ~ 
0.05 m -1. Values k" fo r th e  given m odes are show n in  
Table 3.

T h e  given m odes have th e  follow ing in te rp re ta tio n . 
E ach  o f  th e m  represen ts th e  sum  o f  several F abry— 
P ero t m odes for w h ich  c o n d itio n  (13) is essentially  n o t 
m et. In  th is case, th e  b eam  is sca tte red  an d  th e re  is an  
outflow  o f  energy to  d ifferen t F abry—P ero t m odes. I f  it 
tu rn s  o u t th a t these  m odes are sy n ch ron ized  acco rd ing  
to  frequency, a v e ry -h igh -qua lity  m ixed  m o d e  is g en 
era ted . In  o th e r  w ords, such  m ixed m odes are th e  
resu lt o f  in te rac tio n  betw een  Fabry—P ero t m odes.

N o te  th a t fo r F ab ry—P ero t m o d es to  in te ra c t 
effectively, th ese  m o d es sh o u ld  co rre sp o n d  to  c lose 
ra tio n a l d irec tio n s . I f  th e  n u m b e r o f  n o n d isap p ea rin g  
d irec tio n s  is fin ite , th e n  w ith  in creasin g  freq u en cy  all 
th ese  d irec tio n s  are far from  o n e  a n o th e r; i.e ., fo r th e  
low est m o d es in  te rm s o f  th e  transversa l in d ex  in  
th ese  d irec tio n s , c o n d itio n  (7) is m e t a n d  th e re  is n o  
sca tte rin g  in to  o th e r  m odes. In  c o n tra s t, w h en  th e re  
is a lim it p o in t am o n g  th e  n o n d isap p ea rin g  d ire c 
tio n s , n e a r  th is  p o in t th e re  w ill be  in te ra c tin g  m o d es 
a t an y  h igh  frequency. In  th is  way, th e  p resen ce  o f  
h ig h -q u a lity  m ixed  m o d es a t h ig h  freq u en c ies  is a 
p ro p e rty  o f  ro o m s w ith  a n  in fin ite  n u m b e r o f  n o n d is 
ap p earin g  d irec tio n s.

Table 2. Results o f numerical experiment for room B: Fabry—Perot modes

(M, N) j в k", m 1 H, m d1, m d2 , m k", m 1 theor.

(1, 0) 1 0.5 0.0004 4 6 6 0.00058
3 1.0 0.0045 0.0053
5 1.5 0.013 0.015

(1, 1) 1 0.6 0.0036 2 11.6 11.6 0.006
2 1.3 0.014 0.024
3 2.0 0.032 0.057

(1, 2) 1 1.5 0.014 1.7 20.9 20.9 0.018

(0, 1) 1 0.1 0.00025 6 5 5 0.00016
3 0.4 0.0020 0.0014
5 0.8 0.0032 0.004
9 1.3 0.011 0.013

13 1.9 0.018 0.030
17 2.5 0.019 0.053
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( а ) (b) ( c ) (d) ( e )

Fig. 10. Mixed modes of room B.

ELEM EN TA RY  ESTIM ATE O F  T H E  IN D E X  
O F A TTEN U A TIO N  O F M IX ED  M O D ES

Explaining the structure o f mixed m odes represents 
a separate relatively com plex problem . H ere we show 
that for room  B there exists a com bined m ode and the 
attenuation  index drops w ith an increase in frequency. 
The constructed estim ate is very rough.

We select the frequency in such a way that the rela
tionship

T m' тL y — = n J
c

is fulfilled for a certain  large integer J . As well, the ray 
traveling along the y  axis from  one wall to  the o ther 
and back returns w ith the same phase w ith w hich it 
left.

We apply the reflection m ethod to  room  B. As a 
result, we obtain the tw o-dim ensional periodic system 
o f screens shown in  Fig. 11. The periods o f the struc
ture are 2Lx and 2Ly, and all screens are parallel to  the 
y  axis and have length 2 Wy. The value o f each aperture 
is 2(Ly — Wy). Beams traveling at small angles to the y  
axis correspond to m ixed modes.

We use the periodicity o f the system along the x  axis 
and exam ine the passage o f the wave from  cross sec
tion  x  =  Lx to cross section x  =  —Lx; i.e., we look at one 
period o f the system. Let in cross section x  =  Lx, from 
the side o f positive x , a plane wave fall at a glancing 
angle to  the apertures. O ur task will be to  estim ate 
the value o f the  wave in  the  apertures in  cross section
x  L x.

Propagation occurs along the rays, one o f w hich is 
shown in Fig. 11. The ray w ith index n connects point 
(Lx, y) w ith poin t (—Lx, y  +  2nLy). This rate is charac

terized by length R n and angle фп. Clearly, sin фп =
2Lx/R n.

In  accordance w ith the G reen ’s form ula, it is pos
sible to estim ate the partial am plitude corresponding 
to  the ray w ith index n as

Un = ik' sin (ф п) (Ly -  W y)G(kRn) , (18)

where G(kR) is the plane G reen ’s function:

i n / 4
G (k R n) =  e exp {ik R n}

4 ^ 2 n k R n

i n / 4 f ф2
*------e--------exp l i k ' — R n + k " R n

4 V ^ k R -  l  2 n n

We will describe the exponential growth o f all term s by 
the m ultiplier exp|k"R eff|,  where R eff will be estim ated 
below. The field in  the aperture can be estim ated as the 
sum  o f contributions (18):

u = -  e  3 ”/ L x( l  -  w )

x exp{k " Reff}^ R n ' 2exp
n

(19)

We estim ate the sum  entering into (19). N ote that at 
large n the exponent is close to  unity, but as n 
decreases, it begins to  oscillate. The boundary o f the 
oscillating behavior o f the integral is obviously

Table 3. Attenuation indices of mixed modes R  eff k 'L 2,x,

M o d e a ) b ) c ) d ) e )

k " ,  m - 1 0 . 0 0 7 6 0 . 0 0 9 0 . 0 0 6 1 0 . 0 0 6 0 0 . 0 0 5 0

and this is a good estim ate (from  below) for the effec
tive length o f the ray for calculating the exponentially 
growing m ultiplier in (19).
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2Ly

2Wy Ы 'tka ■

Room B

Fig. 11. Problem on propagation of creeping rays between 
apertures.

ily calculated (its asym ptotics do no t depend on  v0):

i
n

_-3/2 L  .k ' L2
R n exp j 2 1 —

i n !  1

А/ 2 k ' 2 L xL y

Finally,

L -  W
u »  exp { k  ” R  , ff} - .

F rom  the condition  on  periodicity o f the field in  the 
aperture line,

k '' - U  Г A L _R  vL  -  W>v̂eff ^y rry
ln

k ' L2 Ly -  W j

Thus, w ith increasing frequency (i.e., w ith increas
ing k'), the quantity k" behaves as (k ')-1. This m eans 
that the index o f a ttenuation  o f the given m ode 
decreases. The corresponding estim ate for any Fabry— 
Perot m ode w ith fixed M , N , and j  is (k ')—3/2; i.e., the 
index o f attenuation  o f Fabry—Perot m odes decreases 
m ore rapidly.

We replace the sum  with the integral

X  R -1,1 exp
n

-3/2exp

(2 0 )

where the lower lim it o f integration v0 is chosen such 
that the exponent in (20) oscillates. The integral is eas-

SOM E D IFFR A C T IO N  PROBLEM S IM PORTANT 
FO R  CALCULATING M ODES 
IN  RECTANGULA R ROOM S

As noted above, exact (in a high-quality  approxi
m ation) description o f Fabry—Perot m odes is only 
possible in the case where at the boundary o f the wave 
beam , the apertures form  a system characteristic o f the 
W einstein problem . We take the W einstein problem  to 
m ean a problem  on  the reflection o f a high-frequency 
wave from  a periodic system o f ideally absorbing 
screens when there is grazing incidence. This problem  
is schem atically depicted in Fig. 12a.

(a) (b)

Fig. 12. Formulation of diffraction problems.
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I f  the boundary o f the beam  passes along an  area o f 
a hard  wall, it is necessary to solve the problem  o f 
reflection o f a creeping wave from  the structure shown 
in  Fig. 12b. We suppose th a t horizontal scatters are 
hard, and vertical scatters, absorbing. This problem  is 
very im portant, since this is the typical structure o f the 
boundary for m odes corresponding to the lim it n o n 
disappearing direction.

I f  the boundary o f the beam  passes near several 
edges o f the windows, in  order to describe such a 
m ode, it is necessary to solve the problem  o f the type 
depicted in  Fig. 12c.

Finally, if  the walls in  the room  are no t parallel but 
deviate at a sm all angle, it is necessary to  solve the 
problem  on  propagation along a curved aperture line 
(Fig. 12d).

T he authors know  o f no analytical solutions to 
problem s b —d. It is possible tha t we can  apply the 
W iener—H o p f m atrix  m ethod to problem  c. We sup
pose that it m ay be possible to successfully apply the 
m ethod  pu t forth  in  [9] to the given problems.

N o te  tha t som e com plex problem s on diffraction 
on  periodic boundaries have been solved in  [11—13].

C O N C L U SIO N S

We have investigated the tw o-dim ensional problem  
o f high-frequency m odes in  a rectangular resonator 
w ith  acoustically hard  walls. It has windows tha t rep 
resent ideally absorbing fragm ents o f walls.

We in troduce the concept o f  a virtual resonator, 
w hich is a family o f parallel closed billiard trajectories 
tha t do n o t h it the windows. T he room s are divided 
into two classes: those having a finite num ber ofvirtual 
resonators and those having an  infinite num ber o f vir
tual resonators.

For each virtual resonator in  the case o f a very sim 
ple boundary, we have exam ined the structure o f 
m odes and estim ated the attenuation  index o f  each 
m ode. We have constructed  an  estim ate on  the basis o f 
the W einstein theory  for the reflection o f a wave in  the 
aperture line. Each m ode is characterized by the vir
tual resonator to w hich it belongs, the transversal 
index, and the longitudinal index.

We have conducted  a num erical experim ent for two 
room s. R oom  A belongs to  the first class (it has a finite 
num ber o f  virtual resonators), and room  B belongs to 
the second class (it has an  infinite num ber o f resona
tors). We have shown th a t in  the case o f room  A, we 
have found as a result o f  num erical experim ent m odes

tha t agree well w ith  theoretical estimates. For room  B, 
along w ith  Fabry—Perot modes, we have found mixed 
m odes, w hich are the sum  o f several Fabry—Perot 
m odes lying close to the lim it direction.

We have estim ated the attenuation  index for a 
m ixed m ode in  room  B. We have shown tha t the a tten 

uation  index falls as ю -1, while the attenuation  index 

for any fixed Fabry—Perot m odes falls as ю03/2.

We have form ulated diffraction problems im por
tan t for constructing the field in  rectangular rooms.
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