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Abstract— Deconvolution of ultrasonic echo signals improves resolution and quality of ultrasonic images. 
The problem of reconstructing the reflectivity of a biological tissue is examined by adaptive lattice deconvo­
lution of the echo ultrasound signals. The simulation of the signal formation process in an ultrasonic-echo 
scan line in noisy conditions is estimated. The reflectivity of a biological tissue is estimated as cross-correla­
tion coefficients between forward and backward predication errors in each stage of the adaptive lattice filter.
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IN T R O D U C T IO N

T he use o f deconvolution technique for bo th  range 
and later resolution enhancem ent in  ultrasonic appli­
cation  has been subject to widespread investigation 
and is well docum ented in  the literature [1—4]. In  this 
paper, the lattice adaptive deconvolution algorithm  
has been used to enhance axial resolution in  an  u ltra ­
sonic system  by suitable processing o f the received 
output. This approach offers several advantages over 
the transversal structure. First, the lattice structure 
orthogonalizes the input signal stage-by-stage, w hich 
leads to  fast convergence and efficient tracking capa­
bilities w hen used in  an  adaptive environm ent. Sec­
ond, the various stages are decoupled from  each other, 
so it is relatively easy to increase the prediction order if 
required. T he effect o f  convergence param eters and 
filter length on the perform ance o f the adaptive algo­
rithm  has been  investigated.

In  practice it is well accepted that, one scan line o f 
the received pulse-echo signal, y(t) a t tim e t, can  be 
represented as [5]

y  ( t) = w ( t) *u( t) + n ( t) , ( 1)

w here u(t) is the m edium  response or the reflectivity 
function [6 ], w(t) is the u ltrasound system  response 
[7], n(t) is the zero -m ean  Gaussian noise, and * repre­
sents convolution. D econvolution attem pts to remove 
the effect o f the input function w(t) from  the output y(t) 
to achieve som e close approxim ation to the original 
m edium  im pulse response u(t).

1 The article is published in the original.

ADAPTIVE LATTICE FILTER
T he adaptive lattice filter algorithm  [8 ] discussed in 

this paper are im plem ented w ith  F IR  filter structure. 
T he u nknown system  is m odeled by an  F IR  filter w ith 
adjustable coefficients. Both the u nknown tim e-vari­
an t system  and F IR  filter m odel are excited by an  input 
sequence. T he adaptive F IR  filter ou tput is com pared 
w ith the unknow n system  output to produce an  esti­
m ation  error. T he estim ation error is th en  used as the 
input to an  adaptive control algorithm  w hich corrects 
the individual tap weights o f the filter. This process is 
repeated through several stages un til the estim ation 
error becom es sufficiently small. T he resultant F IR  
filter response now represents tha t o f  the previously 
u nknown system. Figure 1 shows the stages o f a lattice 
filter structure. T he following equations represent a set 
o f recursive equations describing the lattice filter as 
derived from  Fig. 1 [9].

/ 0 (n ) = b0( n ) = y (  n ), (2 )

f m (n  ) = f m -  1(n) -  K m(n ) bm -  1(n -  1 ) > (3)

bm (n  ) = bm -  1 (n -  1 ) -  K m (n ) f m -  1( n ) > (4)

w heref m(n), bm(n) are the forward and backward single 
predication residuals at the m  th  stage ou tput and 
Km(n) is the reflection coefficient. A n adaptive gradi­
ent algorithm  for estim ation o f these coefficients is 
given by [9]

K m (n + 1) = K m (n )

+ Um[ fm (n ) bm -  1 (n -  1 ) + f m -  1 (n ) bm (n )],

w here am a convergence factor. T he average power 
level o f the inpu t trace can  be calculated as the

537

mailto:mgalal09@yahoo.com


538 ALI

(a)

У(п)

fo(n)

- a
bo(n)

fi(n) fl(n) ! fm -l(n) fm(n)
1l _

Stage Stage il Stage
l 2 l

1

m

bi(n) b2(«) ! bm-i(n) bm(n)

weighted sum m ation o f the previous value and the 
square o f the current data po in t the energy for adaptive 
lattice im plem entation can  be w ritten as [1 0 ]

ст(n ) = рст(n -  1) (6)

+ (1  -  p ) [ ( / ( n ) ) 2 + (b(n -  1) ) 2],

where p is a weight factor (0 < p < 1). E quation (6 ) can 
be used to sm ooth out the actual noisy gradient.

Voltage

Fig. 2. Time domain pulse-echo response of 5 MHz trans­
ducer.

RESULTS

T he results are derived for a representative range o f 
sim ulated ultrasonic data, obtained using the m odel­
ing o f ultrasonic piezoelectric transducers described in 
reference [11]. The sim ulation was applied using typi­
cal data for transducer constructed w ith m edium  
dam ping m aterials applied to  the back face [12]. The 
transm itter response was applied for 10 m m  diam eter 
pulse-echo transducer o f 5 M H z center frequency. It 
should be noted that the wavelength corresponding to 
the frequency o f pulse-echo transducer is about
0.3 m m , w hich may be quite feasible when soft tissues 
are im aged [13]. In  order to investigate the com bined 
effects o f  the transducer, transient acoustic field 
response [14] and absorption filter on  scanning system 
perform ance the sim ulation was applied to a m edium  
o f soft biological tissue w ith an  absorption coefficient 
o f 1 dB M H z cm. consequently, assuming the tissue 
properties to be uniform  in the plane perpendicular to 
the scanning beam . The sim ulation were carried out by 
m ultiplying the transfer functions o f the two trans­
ducer responses by the transient acoustic field 
response, transfer function o f the transm ission 
m edium  and the reflector sequence o f the tissue in the 
frequency dom ain [15]. The sim ulation was carried 
out at an  effective sampling tim e o f 5 ns. Figure 2 
shows the sim ulation o f a 5 M H z pulse-echo trans­
ducer. The artificial reflector sequence o f biological 
tissue is shown in Fig. 3 corresponding to  seven point 
targets in  the tissue which distributed random ly in 
position and am plitude. The pulse-echo response o f 
the transducer has been com bined w ith the tissue 
reflector sequence, transient diffraction acoustic field
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Arbitary units

Number of samples

Fig. 3. The impulse reflector series of tissue.

and m edium  absorption response for a depth 5 cm  in 
biological tissue. The m ost com m on type o f noise and 
the one that we are m ost interested in , is G aussian 
noise. In  m any situations, the noise th a t is present 
w ithin an image can be m odeled as the sum  o f m any 
independent noise sources. U nder this situation, 
G aussian noise can be used to  m odel the noise present 
in an A -scan, consequently. An uncorrelated  G aussian 
noise can be simply added to  the overall tim e-dom ain  
response.

The sim ulation signal-to-noise ratio values p re­
sented here used the average power values for signal 
and noise in w hich the average values are obtained by 
averaging over the tim e range o f interest. Figure 4 
shows the overall tim e-dom ain  response at the receiver 
term inal at signal-to-noise level o f 25 dB. The squared 
error norm  between the true reflectivity and the p re­
dicted reflectivity output from  deconvolution algo­
rithm  was com puted to  obtain the optim um  param eter 
o f filter length, a  and p. O ur result shows that the op ti­
m um  param eter for adaptive lattice deconvolution 
takes the values a  =  1.7, p =  0.97 and filter length 
equal to  36. The deconvolution results for A-scan 
ultrasonic data at different signal to  noise ratio are 
shown in Fig. 5. F rom  this figure, it can be seen that 
the first and second responses overlapping in the 
reconstruction function due to  the tim e sequence 
between them  equal to  0.375 ps. The alternating sign 
o f the reconstructed function is very close to  the initial 
pulse. The relative Am plitudes o f the responses are 
equal to  the relative initial am plitudes, and their loca­
tions look like real locations. It is clear from these fig­
ures th a t the results are prom ising for improving reso­
lu tion and m inim izing noise. The deconvolution

Voltage

Fig. 4. The overall simulation of pulse-echo 5 MHz after 
propagation 5 cm in soft tissue with signal to noise 
level 25.

Arbitary units

Fig. 5. Deconvolution processor for estimated reflectivity 
functions at signal to noise ratio (a) 25 dB, (b) 45 dB.
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results presented are in  good agreem ent w ith the true 
reflectivity function.

C O N C L U SIO N S

This paper has described a m ethod for ultrasound 
deconvolution based on  adaptive lattice filter. We have 
presented an  adaptive lattice deconvolution technique 
to process ultrasound echo signals in  order to obtain a 
better estim ation o f the reflectivity function. T he suc­
cess o f this technique is dependent on  the convergence 
param eter, the weight factor and filter length. The 
algorithm  can  be used effectively in  real tim e applica­
tion  particularly two and three dim ensional images. 
F u rth er work in  this direction should, however, 
develop techniques w hich exploit the sparse nature o f 
the reflection sequences.
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