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Abstract— Deconvolution of ultrasonic echo signals improves resolution and quality of ultrasonic images.
The problem of reconstructing the reflectivity of a biological tissue is examined by adaptive lattice deconvo-
lution of the echo ultrasound signals. The simulation of the signal formation process in an ultrasonic-echo
scan line in noisy conditions is estimated. The reflectivity of a biological tissue is estimated as cross-correla-
tion coefficients between forward and backward predication errors in each stage of the adaptive lattice filter.
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INTRODUCTION

The use of deconvolution technique for both range
and later resolution enhancement in ultrasonic appli-
cation has been subject to widespread investigation
and is well documented in the literature [1—4]. In this
paper, the lattice adaptive deconvolution algorithm
has been used to enhance axial resolution in an ultra-
sonic system by suitable processing of the received
output. This approach offers several advantages over
the transversal structure. First, the lattice structure
orthogonalizes the input signal stage-by-stage, which
leads to fast convergence and efficient tracking capa-
bilities when used in an adaptive environment. Sec-
ond, the various stages are decoupled from each other,
so it is relatively easy to increase the prediction order if
required. The effect of convergence parameters and
filter length on the performance of the adaptive algo-
rithm has been investigated.

In practice it is well accepted that, one scan line of
the received pulse-echo signal, y(f) at time ¢, can be
represented as [5]

() = w)*u(t) + n(1), (1

where u(f) is the medium response or the reflectivity
function [6], w(?) is the ultrasound system response
[7], n(?) is the zero-mean Gaussian noise, and * repre-
sents convolution. Deconvolution attempts to remove
the effect of the input function w(f) from the output y(7)
to achieve some close approximation to the original
medium impulse response u(f).

L The article is published in the original.

ADAPTIVE LATTICE FILTER

The adaptive lattice filter algorithm [8] discussed in
this paper are implemented with FIR filter structure.
The unknown system is modeled by an FIR filter with
adjustable coefficients. Both the unknown time-vari-
ant system and FIR filter model are excited by an input
sequence. The adaptive FIR filter output is compared
with the unknown system output to produce an esti-
mation error. The estimation error is then used as the
input to an adaptive control algorithm which corrects
the individual tap weights of the filter. This process is
repeated through several stages until the estimation
error becomes sufficiently small. The resultant FIR
filter response now represents that of the previously
unknown system. Figure 1 shows the stages of a lattice
filter structure. The following equations represent a set
of recursive equations describing the lattice filter as
derived from Fig. 1 [9].

fo(n) = bo(n) = y(n), 2
Su(1) = Jp i) = K, ()b, _((n—1), 3
b,(n) = b, (n=1)=K,(n)], 1(n), “

wheref,, (n), b, (n) are the forward and backward single
predication residuals at the mth stage output and
K, (n) is the reflection coefficient. An adaptive gradi-
ent algorithm for estimation of these coefficients is
given by [9]

K, (n+1)=K,(n)
+ 0[S (m) by (1 = 1) + 1 (M) (1),

where a,, a convergence factor. The average power
level of the input trace can be calculated as the
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weighted summation of the previous value and the RESULTS

square of the current data point the energy for adaptive
lattice implementation can be written as [10]

o(n) = Bo(n—1)

(6)
+(1=B)(An)* + (b(n—1))"1,

where B is a weight factor (0 < 3 < 1). Equation (6) can
be used to smooth out the actual noisy gradient.
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Fig. 2. Time domain pulse-echo response of 5 MHz trans-
ducer.

The results are derived for a representative range of
simulated ultrasonic data, obtained using the model-
ing of ultrasonic piezoelectric transducers described in
reference [11]. The simulation was applied using typi-
cal data for transducer constructed with medium
damping materials applied to the back face [12]. The
transmitter response was applied for 10 mm diameter
pulse-echo transducer of 5 MHz center frequency. It
should be noted that the wavelength corresponding to
the frequency of pulse-echo transducer is about
0.3 mm, which may be quite feasible when soft tissues
are imaged [13]. In order to investigate the combined
effects of the transducer, transient acoustic field
response [14] and absorption filter on scanning system
performance the simulation was applied to a medium
of soft biological tissue with an absorption coefficient
of 1 dB MHz cm. consequently, assuming the tissue
properties to be uniform in the plane perpendicular to
the scanning beam. The simulation were carried out by
multiplying the transfer functions of the two trans-
ducer responses by the transient acoustic field
response, transfer function of the transmission
medium and the reflector sequence of the tissue in the
frequency domain [15]. The simulation was carried
out at an effective sampling time of 5 ns. Figure 2
shows the simulation of a 5 MHz pulse-echo trans-
ducer. The artificial reflector sequence of biological
tissue is shown in Fig. 3 corresponding to seven point
targets in the tissue which distributed randomly in
position and amplitude. The pulse-echo response of
the transducer has been combined with the tissue
reflector sequence, transient diffraction acoustic field
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Fig. 3. The impulse reflector series of tissue.

and medium absorption response for a depth 5 cm in
biological tissue. The most common type of noise and
the one that we are most interested in, is Gaussian
noise. In many situations, the noise that is present
within an image can be modeled as the sum of many
independent noise sources. Under this situation,
Gaussian noise can be used to model the noise present
in an A-scan, consequently. An uncorrelated Gaussian
noise can be simply added to the overall time-domain
response.

The simulation signal-to-noise ratio values pre-
sented here used the average power values for signal
and noise in which the average values are obtained by
averaging over the time range of interest. Figure 4
shows the overall time-domain response at the receiver
terminal at signal-to-noise level of 25 dB. The squared
error norm between the true reflectivity and the pre-
dicted reflectivity output from deconvolution algo-
rithm was computed to obtain the optimum parameter
of filter length, oo and . Our result shows that the opti-
mum parameter for adaptive lattice deconvolution
takes the values o = 1.7, f = 0.97 and filter length
equal to 36. The deconvolution results for A-scan
ultrasonic data at different signal to noise ratio are
shown in Fig. 5. From this figure, it can be seen that
the first and second responses overlapping in the
reconstruction function due to the time sequence
between them equal to 0.375 ps. The alternating sign
of the reconstructed function is very close to the initial
pulse. The relative Amplitudes of the responses are
equal to the relative initial amplitudes, and their loca-
tions look like real locations. It is clear from these fig-
ures that the results are promising for improving reso-
lution and minimizing noise. The deconvolution
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Fig. 4. The overall simulation of pulse-echo 5 MHz after
propagation 5 cm in soft tissue with signal to noise
level 25.
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Fig. 5. Deconvolution processor for estimated reflectivity
functions at signal to noise ratio (a) 25 dB, (b) 45 dB.
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results presented are in good agreement with the true
reflectivity function.

CONCLUSIONS

This paper has described a method for ultrasound
deconvolution based on adaptive lattice filter. We have
presented an adaptive lattice deconvolution technique
to process ultrasound echo signals in order to obtain a
better estimation of the reflectivity function. The suc-
cess of this technique is dependent on the convergence
parameter, the weight factor and filter length. The
algorithm can be used effectively in real time applica-
tion particularly two and three dimensional images.
Further work in this direction should, however,
develop techniques which exploit the sparse nature of
the reflection sequences.
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