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Abstract— In this paper, the discrete wavelet transform (DWT) is used to solve the dense system of equations 
which arises from integral equation of acoustic scattering. The DWT using appropriate wavelet family for 
acquiring larger sparsification of the system matrix is used to obtain a sparse approximation to the trans­
formed matrix that is used in place of the original matrix in an iterative solver. Alternatively DWT is also used 
to design sparse preconditioners for an iterative method. Also, DWT-based preconditioners are constructed 
to accelerate iterative Krylov subspace methods. Convergence rates and number of operations are discussed 
for each case.
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1. IN T R O D U C T IO N

Integral equation  m ethods have been  used to solve 
exterior acoustic rad ia tion  and scattering problem s 
for m any applications. In  these problem s, the  ex ter­
nal pressure is represen ted  in  term s of a d istribution 
o f  an  acoustic field on  the  surface o f a sca tte rer or 
radiator. By forcing this represen ta tion  to m atch  a 
specified velocity d istribu tion  on  the  surface, an  in te ­
gral for the  unknow n source strengths is obtained. 
O nce the  source density  is obtained, the  pressure at 
any p o in t in  the  exterior region can  be com puted. 
T he surface H elm ho ltz  integral equation  is advan ta­
geous, for form ulating the  acoustic scattering p ro b ­
lem , in  th a t the  p ro b lem ’s d im ensionality  is reduced 
by one and  an  infin ite dom ain  is transform ed to finite 
boundaries in  w hich  the  far-field  rad ia tion  cond ition  
is satisfied.

As long as the ‘length scale is comparable to the used 
wavelength, standard m om ent-m ethod approaches are 
well suited for discretizing the integral equation o f 
acoustic scattering problem  [1]. T he m ethod o f 
m om ent (M oM ) is essentially a discretization schem e 
whereby a general operator equation is transform ed 
in to  a m atrix  equation  w hich  can  be solved n u m eri­
cally. This transfo rm ation  is affected by projections 
on  subspaces, w hich  for acoustic scattering bodies 
are o f finite dim ensions. T he resulting m atrix  is 
always dense w hen conventional expansion and  te s t­
ing functions are used. Recently, there has been  
m u ch  in terest in  using wavelets to sparsify th a t dense 
m om en t m atrix  [2, 3], and  [4]. Extensive com pari­
sons are conducted  on  different wavelet operators for

1 The article is published in the original.

various boundary  integral equations in  m any works, 
as in  [5] and  [6 ].

This paper aim s to  efficiently solve the  dense lin ­
ear system  arising from  a G alerk in-type approx im a­
tion  o f  the  boundary  in tegral equation  o f  acoustic 
scattering using D iscrete Wavelet T ransform  (DW T). 
A  sparse approxim ate linear system  is ob tained  by 
DWT thresholding o f  the  dense linear system. An 
iterative solver, such as the generalized m in im um  
residual m ethod  (G M R E S ) [8 ], is th en  used to  solve 
the sparsified linear system. T he G M R E S  iterative 
m ethod  w ith  restarts, G M R E S (r) is know n as an  effi­
c ien t m ethod  for solving n o n -H erm itian  linear sys­
tem s [9].

A lthough the sm aller the threshold tha t is chosen 
the m ore accurate is the solution, bu t w ith  an  
increased num ber o f nonzero entries, thresholding 
introduces error. Alternatively, DWT based p recond i­
tioners for the dense linear system  is used. Several 
DWT based preconditioners has been developed in  
the literature and  has been  found to  be effective for a 
w ide class o f m atrices [9—12]. These preconditioners, 
namely; the standard DWT, the DWT w ith perm utation 
(DWTPer), and the M odified DWTPer (DW TPerM od), 
will be used for solving our dense linear system  and 
their effects will be illustrated numerically.

For b o th  the  sparsified lin ear system  and  the  
DWT based peco n d itio n ed  linear system , the  n u m ­
ber o f  itera tions requ ired  to  find a so lu tion  w ith in  a 
specified accuracy, the  convergence rates o f  the 
residual and  the  tim e taken  by th e  C P U  will be c o n ­
sidered as com parison  m inu tes betw een different 
p recond itioners.
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T he com parisons are obtained for the problem  o f 
acoustic scattering on an  acoustically hard  sphere due 
to the availability o f analytical solution. T he availabil­
ity o f analytical solution helps in  estim ating the errors 
resulting from  num erical and approxim ation tech ­
niques used.

2. M E T H O D  O F  M O M E N T  FO R M U LA TIO N  
O F A C O U STIC  SC A TTER IN G

T he equivalent boundary integral form ulation o f 
acoustic scattering problem , w hich is valid for an  
acoustic m edium  B  exterior to a finite body B  w ith 
surface S  on  w hich a u n it norm al n, pointing into B , is 
defined. T he body is subm erged into an  infinite linear 
acoustic m edium . W hen a harm onic acoustic wave ф' 
impinges upon  the body B , the resulting integral equa­
tion  for sm ooth  boundaries has the following form ;

C( P  )ф( P )
,  4 ( 1) 

= | ( ф ( 0 -  W(P, Q ) d S Q + 4 п ф '(Р ).
S

This equation is called the surface H elm holtz integral 
equation w here ф ^ )  =  ф(гр)е1т1 a t a po in t P  and Q is a 
po in t on  the body surface.

T he free-space G reen ’s function — for the H elm ­
holtz wave Eq. (1) is given by

and the differential area elem ent is defined as

dS(Q ) = p (Q)d 0 (Q )d L (Q ) ,

where dL(Q) is the differential length o f the generator L  
o f the body at a surface po in t Q, w here Q now  is in te r­
preted as an  arbitrary po in t on L  only.

T he M oM  m ethod  can  be used, w ith  orthogonal 
bases functions to approxim ate the u nknown function 
ф, to convert the integral equation into a system  o f 
equations. For different node points ip and assuming 
the index o f surface elem ents iq, the following dis­
cretized form  o f Eq. (1), for N  nodes on  the surface, 
can  be w ritten  as follows

Аф =  B, (3)

w here A is an  N  x N  matrix. ф and B are N  vectors. An

example for the hard  scatterer w here ^ -  =  0 , we can
d n

write

N

A ( iP>'q) = X  7 1P ( 'q)d L ( 'q) ’ 'p ф 'q,
i  = 1

N

A ( P  iP) = X I xP ( 'q)d L ( ' 1q) -  2 n ’ 'p = 'q
i  = 1

and

(4)

- ( P, Q) = e-kR/ R ,

w here R  is the distance between the field po in t P  and 
a source po in t Q, and n is the outward directed norm al 
at Q. T he coefficient C(P) is defined at P  on  S  provided 
tha t there is a unique tangent to S  a t such a P , as fol­
lows:

B ( ip) = - 4 пф '(ip) У 'р = 1 . . .N , (5)

w here ф is an  N -d im ension vector representing the 
field strength on  the scatterer surface and ф( is the inci­
dent field. E quation (3) is obtained using the colloca­
tion  version o f M oM  w hich employs a delta function 
as a basis function.

0 for P  e  B' 3. DWT O F  SYSTEM M ATRIX

C(P) = 4 n  for P  e  B  . 

2 n  for P  e  S

W hen P  occupies a po in t on  the surface S  w here there 
is no unique tangent plane ([13] and [14]).

Considering an  axisym m etric body and applying

hard-scattering boundary condition  ( ^ -  =  0) , the
Vdn x

integral in  Eq. (1) can  be rew ritten using a cylindrical 
coordinate system  (p, 0 , z) as follows:

r 2n

]<KQ) f
L 0

d ( e-ikR(P’Q) 
dn Q-.

d0( Q) p ( Q )dL(Q ) , (2 )

w here the axisym m etric assum ption implies that the 
field ф ^ )  and its derivative are independent o f 0(P)

For electrom agnetic problem s, it was reported  that 
alm ost identical results are obtained using Daubechies 
and wavelet-like bases [15] and [16]. Daubechies 
wavelets [17] are strictly localized in  space and 
approxim ately localized in  spatial frequency.

T he wavelets can  approxim ate finer resolutions 
near boundaries and corners o f scattering surfaces. In  
general, classical wavelets seem  to be good in  com put­
ing low frequency scattering and an tenna problem s 
[18]. For these reasons and due to sim ilar m athem ati­
cal form ulation o f acoustic scattering, Daubechies 
wavelets are m ore appropriate for our problem . M any 
recent works em ployed D aubechies wavelets in  solving 
scattering problem s [19—22].

T he standard DWT, based on  D aubechies com ­
pactly supported orthogonal wavelets [2 0 , 2 1 ] is a lin ­
ear transform ation th a t transform s a given sm ooth 
vector in  the standard basis to a wavelet basis in  w hich
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m ost coefficients m ay be small or nearly zero. Let v  =

•s0 =  ( s ° , s0 , ..., s°„ - 1 )T be a vector o f length n , such that
n =  2k w here к  is an  integer. T hen  the level l < к  wavelet 
transform  o f v is defined by the following recurrence 
relations

m - 1
„( i +1)

= X  hiS< i +2jj

m - 1
l + 1)

= X  gls < i +2jj (6 )
i = 0 i = 0

w here m  is the order o f com pactly supported wavelets, 
( m) n refers to m  m od n , h0, h 1,..., hm_ 1 are the m low- 

pass filter coefficients, and g0, g1, . . . , gm _ 1 are the high- 
pass filter coefficients derived from  h0, h1, ..., hm _ 1 as 
in  [4] by the following relation

gi = ( - 1  )‘h m - 1 - i (7)
i =  0, 1, ..., m — 1. T he sy((+1) represent weighted aver­

ages o f the elem ents o f s ,i+2J) , i =  0 , 1 , ..., m — 1 and
n/2 l

the d (  +1) are weighted differences o f the sam e ele­
m ents. For a sm ooth  vector, we expect the values o f 

elem ents o f d(  +1) to be small com pared w ith tha t o f

s j  +1) . In  m atrix  form, a level к  DWT o f a vector v  
defined as follows

v  = W v , (8 )

w here

W = WkWk - 1... W, v , (9)

and Wl, l =  1, 2, ..., к  is an  n x n orthogonal matrix. 
Im plem entation  o f the DWT and inverse DWT in 
term s o f m atrix  m ultiplication would be expensive, so 
in  practical the recurrence formulas (6 ) are used to 
im plem ent the transform ation and are referred to as 
Fast Wavelet Transform, FW T and inverse FWT. T he 
cost o f applying a level к  transform  FW T and Inverse 
FW T o f an  n-vector is 0(n log2 n). T he 2 -D im  FW T of 
an  n x n m atrix is m ade up o f n vector FWTs in  the co l­
u m n  direction  and  n  vector FWTs in  the  row  d irec­
tion. H ence the to ta l cost o f a level к  2 -D im  FW T of 
an  n x n m atrix  is O(n2log2n).

T he G alerk in’s discretized form  o f the integral 
Eq. (3) is transform ed using DWT, by the orthogonal 
wavelet transform  m atrix  W  as follows

Since W  is an  orthogonal m atrix, the spectrum  and
pseudo-spectra o f A will be the sam e as those o f A, so 
convergence will n o t be affected by the transform .

A  sparse approxim ation A to the transform ed

m atrix Av  in  (11) is obtained by thresholding. T hat is, 
setting to zero all elem ents whose m agnitude fall 
below a chosen threshold. T he sm aller the threshold 
the m ore accurate the approxim ation is, bu t a t the cost 
o f an  increased num ber o f nonzero entries. I f  A  is no t 
sm ooth  enough, or there exist areas o f n o n-sm oo th ­
ness, then  the DWT will fail to  give a sparse matrix. 
A  possible m easure o f non-sm oothness o f a m atrix  A 
would be to consider finite differences along the rows 
and colum ns, see [10] and [12]. T hat is for each ele­
m ent ait j  o f A (i, j  Ф n) we com pute the infinity n o rm  o f 
the vector whose com ponents are the differences a , j — 
ai + 1, j and a ,j  — a , j + 1. This n o rm  is sim ple to im ple­
m ent and identifies areas o f  non-sm oothness o f A.

If  A is sufficiently sm ooth  we are able to find
a sparse approxim ation A to A , w hich can  be used 
efficiently. T hen , solving the sparse system

A  ф = B (12)

using the G M R E S m ethod  w ithout preconditioning.
A  solution V can  be, also, obtained directly by solving 
the original system  o f Eq. (3) after applying the inverse 
DWT.

However, approximately, A  is spectrally equivalent 
to the original m atrix  A, tha t is, w ith G M R E S  the 
num ber o f iterations are the same. Therefore, if  the 
original m atrix needs preconditioning, we need to p re ­
condition  ( 12 ) a well.

4. W AVELET-BASED P R E C O N D IT IO N E R S
In this section, we solve (11) using preconditioned 

G M R E S m ethod. T he wavelet-based preconditioning
looks for a sparse approxim ation M  to A , M  ~ A  such 
tha t the following Eq. (13) has the sam e solution as 
( 11), bu t w ith  m ore favorable spectral properties.

m - 1 A  ф = m - 1 B . (13)

T he iterative linear’ solver, G M R E S m ethod, p recon­
ditioned by M , converges rapidly if  M  efficiently
approxim ates A  in  som e way, i.e. the m atrices M -1  A

WAWTWф = WB , (10)

w here A is the G alerk in’s m om ent m atrix, ф is the 
unknow n wavelet am plitudes vector, B  is the incident 
field vector defined at the surface points. As such, 
Eq. (10) can  be rew ritten as

A(j) = B . ( 11 )

and A  M -1  are close to the identity  matrix. T he wave­
let-based preconditioners found in  the literature 
nam ely; the standard DWT preconditioner w ith band 
cu t [17], the DWT w ith perm utation  (DW TPer) p re ­
conditioner [10], and the m odified DWT w ith  perm u­
tation  (DW TPerM od) preconditioner [23] are effi­
cient preconditioners for the acoustic scattering prob­
lem , [10]. M ainly these types o f preconditioners are
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Fig. 1. Matrix A for N  = 32.
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Fig. 2. Standard DWT with thresholding, N  = 128.

based on  the idea o f splitting the m atrix into the sum  
o f a sm ooth m atrix and a band m atrix and then  com ­
pressing the sm ooth part by m eans o f a DWT. We 
review these preconditioners briefly.

Usually a ‘finger’-like sparsity pattern  results after 
a standard DWT is perform ed on a m atrix A w hich is 
sm ooth but w ith non-sm ooth  diagonal band. The p a t­
tern  o f thresholded transform ed m atrix, A , can be 
considered as a preconditioner w hich has the disad­
vantage o f increasing num ber o f nonzero  entries d u r­
ing the LU  factorization step o f the G M R E S iterative 
m ethod. This is referred to as the fill-in property. To
avoid this, a suitable band  form  M  o f A is in troduced 
[23]. Such a pattern  may be used m ore advantageously 
than  a finger-like one. Then, M -1 is used as the p re­
conditioner to the linear system ( 11) solved using 
G M R E S m ethod. Thus, the solution to  (11), ф, is
found by applying the inverse DWT of ф . This p recon­
ditioner is referred to as the standard DWT with band 
cut preconditioner.

H ere the band  size o f M  determ ines the cost o f p re­
conditioning step. For a small band size, the precond i­

tioner may no t approxim ate A  1 accurately, while 
increasing the size causes each iteration to be too 
expensive.

Alternatively in [10] a preconditioner was constructed

by perm uting the rows and colum ns o f m atrix A , 
denoted by DWTPer, to  avoid the creation o f finger 
pattern  m atrices and form  a banded matrix. The p er­
m uted DWT would give

T
A = WAW , (14)

where

W = PW  (15)

and P  is an n x n perm utation  matrix. This implies that 
the perm uted DWT can be im plem ented either 
directly using (15) or indirectly using P after a standard

DWT has been applied. A band form  M  o f A  is 
selected with an increase in bandw idth by at m ost 
m(2L - 1 — 1), for a level L  DWTPer, as in [10]. Such a 
pattern  may be used m ore advantageously than  a fin­
ger-like one. Then, M —1 is used as the preconditioner 
to  the linear system ( 11) solved using G M R E S 
m ethod.

This preconditioner have been dem onstrated to be 
effective for m atrices that are sm ooth w ith n o n ­
sm ooth diagonal bands only [10]. However, as our 
problem  is sm ooth, bu t w ith bo th  diagonal and off- 
diagonal non-sm ooth  bands, see Fig. 1 . I t  will no 
longer be possible to find a suitable bandw idth to
include all o f the required entries o f A  and thus the 
DW TPer preconditioner will not be a close approxi­
m ation to A .

A better preconditioner, suitable for our problem , 
is the m odified DW TPer preconditioner found in [12] 
that will include all large entries corresponding to the 
non-sm ooth  bands and that corresponding to the 
weighted averages. The DW TPer preconditioner is fur­
ther improved in [11] and [24]. This is denoted by 
DW TPerM od preconditioner. In  constructing this 
preconditioner, any non-sm ooth  areas are identified 
and the m atrix is perm uted to arrange any localized 
non-sm ooth  off-diagonal bands to the bo ttom  or the 
righ t-hand  edges o f the m atrix to form  a bordered 
block matrix. T hen, a DW TPer is applied to the p er­
m uted system. The resulting transform ed m atrix A  has 
an arrow -shaped sparsity pattern  above some thresh­
old w ith predicted increase in bandw idths [12]. This 
pattern  suffers from  little fill-in during LU  factoriza­
tion  step.
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Table 1. Number of iterations of GMRES method with to 
l = 10-6

N 32 (ka = 5) 64 (ka = 10) 128 (ka = 10) 256 (ka = 20)

P1 11 15 14 20

P2 11 15 15 25
P3 7 14 10 17
P4 6 6 9 17
P5 7 9 4 10

Table 2. CPU-time in ms of GMRES method

N 32 64 128 256

P2 5.17053 7.86619 5.24753 7.31470
P5 4.02172 1.78506 1.41279 1.48344

Table 3. % Normalized error in computation

N 32 64 128 256

P1 0.03200 0.07900 0.04700 0.14100
P2 0.0310 0.01500 0.01700 0.10900
P3 0.0300 0.11000 0.04700 0.15600
P4 0.00100 0.07900 0.09300 0.12500
P5 0.00100 0.01500 0.01600 0.06300

Further, in  [24] tighter bounds for the bandw idths 
are given and an  optim al level l o f DW TPer is deter­
m ined, inherently, based on the m inim ization o f the 
num ber o f nonzero entries.

Based on  th e  m odifications to  th e  D W TPer p ro ­
posed  in  [12] and  [24] we co n stru c ted  th e  D W TPer- 
M o d  p reco n d itio n e r and  found it to  be effective in  
th a t it reduces b o th  fill-in  o f  L U  fac to riza tio n  and  
th e  n u m b er o f  itera tions requ ired  fo r convergence 
to  a requ ired  to lerance. A ccordingly, b o th  co m p u ta ­
tio n a l com plexity  and  convergence ra te  are 
im proved.

T he cost associated w ith  the  construc tion  o f the 
p reconditioners is m ainly  in  the  app lication  o f  the 
wavelet transform . O ther costs related  to  p erm u ta ­
tion  o f the  rows and  colum ns, or thresholding and 
cutting  are n o t expected to  have a significant value. 
Thus, the cost in  term s o f  flops o f  perform ing a s tan ­
dard  DWT, and  sim ilarly th a t o f  DW TPer and

D W T-PerM od, order m, level l to  an  n x n m atrix  is 
[12 ] 8mn2(1  -  1/ 2 l).

I f  the preconditioner is effective, this additional 
cost in  constructing the preconditioner could be 
acceptable due to  the reduction  in  the num ber o f 
G M R E S iterations required for convergence to the 
required tolerance.

5. RESULTS
The integral equation form ulation o f the acoustic 

scattering problem  as defined in  ( 1) is solved using the 
proposed discretization schem e considering different 
M  divisions on  the surface o f an  acoustically hard  scat- 
terer.

T he incident field is taken as a plane wave and the 
field frequency is taken over a wide frequency range 
covering the range o f ka  =  1 ...2 0  while к  is the p ropa­
gation constan t and a is the scatterer characteristic 
length.

T he results obtained are, then , com pared based on 
a norm alized error from  analytical solution. T he n o r­
m alized error is defined as the ratio between the field 
(ф) error to  the analytical solution as follows

N orm alized error =  ^ 7 ?~ t ana- , (16)
Hanall

w here w vl is the com puted num erical solution using 
the studied m ethods, ana  is the analytical solution 
given in  [25] for a hard  acoustically sphere, and ||.|| is 
the l2 norm .

On the o ther hand , the integral equation o f acous­
tic scattering in  ( 1) is solved for a different wavenum ­
bers к  and sphere radii a w ith an  incident p lane wave 
on an  acoustically hard  sphere for obtaining ф ^ .  We, 
then, illustrate the effectiveness o f the presented p re­
conditioners through com paring the perform ance o f 
G M R E S using the following m ethods

P1 Diagonal preconditioner.
P2 DWT matrix without preconditioning.
P3 Standard DWT Preconditioner.
P4 DWTPer Preconditioner.
P5 DW TPerMod Preconditioner.

T he choices o f wavelet family are large and the 
m atrix dim ension is dependent on  the wavenum ber 
and  should be in  the o rder o f  in teger power o f two,

Table 4. Number of Iterations of GMRES method for N  = 128 with different values of ka

ka 10 11.12 12.24 13.36 14.48 15 15.6 16.72 17.84 18.96

P2 15 15 15 16 16 17 17 19 20 20

P5 4 5 5 6 7 7 8 9 10 10
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Fig. 3. DWTPer Preconditioner, N  = 128. Fig. 4. DWTPerMod Preconditioner, N  = 128.
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0

2

i.e. (2"). So, we confine the  d im ension to  selective 
values as ind icated  in Table 1. In  each  case, the  n o r­
m alized wavenum bers, k a , are taken  in  a wide range 
betw een 1 ...2 0  and  the wavelet family is taken  as 
D aubechies o f o rder 4. In  each case above using 
G M R E S , we restarted  G M R E S  after 20 itera tion  
steps and  stopped the itera tion  w hen the relative 
residual norm  fell below  10 -6.

Firstly, Table 1 lists the num ber o f itera tion  steps 
required  by the G M R E S  m ethod  to  converge to  the 
required  to lerance, for the w avenum ber ka  and 
problem  size N. T he problem  size is taken  to  be p ro ­
p o rtional to  the w avenum ber [26]. Secondly, the 
corresponding  C P U -tim e  for each case is given, in  
Table 2. In  Table 3, the norm alized  erro r as defined 
in  (16) is p resen ted  for P2 and  P5 w here one could
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6 . C O N C L U SIO N S% error

Fig. 6 . Normalized error versus wavenumber ka for DWT 
and DWTperMod preconditioners for N  = 128.

observe th e  low accuracy  o f  com puting  th e  so lu tion  
directly  from  th e  transfo rm ed  system  w hich  could  
be accep tab le for som e app lica tions requiring  less 
co m p u ta tio n al tim e. F igures 2—4 show the sparsity 
p a tte rn  o f  a level L  =  3 and  N  =  256 for th e  DWT, 
DW TPer, and  the  D W TPerM od precond itioners. In  
add ition , the residual rate o f convergence is given in 
F igure 5 to  show the  convergence behavior o f the 
d ifferent m ethods.

As m entioned in the previous section the construc­
tion  o f the DW T-based preconditioners encounters an 
am ount o f overhead. This is com pensated by the 
reduction in the num ber o f iterations especially for 
higher dim ensional problem s, as illustrated in Table 1. 
The DW TPerM od preconditioner outperform s the 
o ther preconditioners w ith the num ber o f iterations 
for high dim ensions and less num ber o f operations per 
iteration step due to the structure o f preconditioner, as 
shown in Fig. 4. As m entioned in Section 4, an op ti­
m um  level o f transform  is, inherently, com puted to 
reduce the num ber o f nonzero entries o f the trans­
form ed system matrix. In  general, the num ber o f iter­
ations using G M R E S is reduced using DW T-based 
preconditioner m ethods.

A nother po in t o f com parison is obtained by fixing 
the problem  size to  a sufficiently large num ber (N  =  
128) and com paring the perform ance o f different solu­
tion  m ethods based on the num ber o f iterations and 
solution accuracy. In  Table 4, the num ber o f iteration 
steps o f the G M R E S m ethod is depicted for each solu­
tion  m ethod at different norm alized wavenum ber (ka) 
w ith fixed num ber o f discretization points at 128. For 
this case, the corresponding norm alized error is p re­
sented in Fig. 6 .

The dense m atrix o f an integral equation is sparsi- 
fied and solved using DWT. A typical case o f acoustic 
scattering is considered for illustrative purposes. D if­
ferent sparsificatoin approaches are considered using 
DWT. The results show th a t DW T-based p recondi­
tioners are efficient for acoustic scattering problem. 
This is due to the smoothness property o f its coefficient 
matrix. It has been shown that further study o f the 
m atrix structure could greatly improve the com puta­
tional cost using an iterative solver. Several DW T-based 
preconditioners were im plem ented and have shown to 
outperform  the diagonal preconditioning.

The use o f the thresholded DWT m atrix has shown 
to improve the com putational tim e as dealing with a 
sparse m atrix is solved m ore efficiently than  a dense 
matrix. This im provem ent is on  the expense o f system 
accuracy, w hich is acceptable in some applications. 
DW T-based preconditioners achieve higher accuracy 
on a slight increase in the com putational load o f co n ­
structing the preconditioner.

D ifferent cases o f acoustic scattering on a hard 
acoustical sphere are studied on a wide range o f the 
norm alized wavenum ber ka  =  1 ...2 0  and the wavelet 
family is taken as D aubechies o f order 4. G M R E S 
iterative m ethod is used in solving the resulting system 
o f equations for acoustic scattering problem  and com ­
pared to  direct DWT solution and standard diagonal 
preconditioner.

The study shows that DW TPerM od P reconditioner 
and standard DWT give higher accuracy than  the solu­
tion  obtained directly from  the transform ed system. 
The sparsity pattern  improves in the case o f em ploying 
DW TPerM od Preconditioner.

The construction o f the DW T-based precond ition­
ers encounters an  am ount o f overhead. This is com ­
pensated by the reduction in the num ber o f iterations 
especially for higher dim ensional problem s. The 
DW TPerM od preconditioner outperform s the o ther 
preconditioners w ith the num ber o f iterations for high 
dim ensions and less num ber o f operations per itera­
tion  step due to  the structure o f preconditioner. In  
general, the num ber o f iterations using G M R E S is 
reduced using DW T-based preconditioner m ethods.

A nother poin t o f com parison is obtained by fixing 
the problem  size to  a sufficiently large num ber (N  =  
128) and com paring the perform ance o f different solu­
tion  m ethods based on the num ber o f iterations and 
solution accuracy. In  this case, the DW TPerM od p re­
conditioner outperform s the o ther preconditioners.
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