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Abstract—In this paper, the discrete wavelet transform (DWT) is used to solve the dense system of equations
which arises from integral equation of acoustic scattering. The DWT using appropriate wavelet family for
acquiring larger sparsification of the system matrix is used to obtain a sparse approximation to the trans-
formed matrix that is used in place of the original matrix in an iterative solver. Alternatively DWT is also used
to design sparse preconditioners for an iterative method. Also, DWT-based preconditioners are constructed
to accelerate iterative Krylov subspace methods. Convergence rates and number of operations are discussed

for each case.
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1. INTRODUCTION

Integral equation methods have been used to solve
exterior acoustic radiation and scattering problems
for many applications. In these problems, the exter-
nal pressure is represented in terms of a distribution
of an acoustic field on the surface of a scatterer or
radiator. By forcing this representation to match a
specified velocity distribution on the surface, an inte-
gral for the unknown source strengths is obtained.
Once the source density is obtained, the pressure at
any point in the exterior region can be computed.
The surface Helmholtz integral equation is advanta-
geous, for formulating the acoustic scattering prob-
lem, in that the problem’s dimensionality is reduced
by one and an infinite domain is transformed to finite
boundaries in which the far-field radiation condition
is satisfied.

As long as the ‘length scale is comparable to the used
wavelength, standard moment-method approaches are
well suited for discretizing the integral equation of
acoustic scattering problem [1]. The method of
moment (MoM) is essentially a discretization scheme
whereby a general operator equation is transformed
into a matrix equation which can be solved numeri-
cally. This transformation is affected by projections
on subspaces, which for acoustic scattering bodies
are of finite dimensions. The resulting matrix is
always dense when conventional expansion and test-
ing functions are used. Recently, there has been
much interest in using wavelets to sparsify that dense
moment matrix [2, 3], and [4]. Extensive compari-
sons are conducted on different wavelet operators for

L The article is published in the original.

various boundary integral equations in many works,
as in [5] and [6].

This paper aims to efficiently solve the dense lin-
ear system arising from a Galerkin-type approxima-
tion of the boundary integral equation of acoustic
scattering using Discrete Wavelet Transform (DWT).
A sparse approximate linear system is obtained by
DWT thresholding of the dense linear system. An
iterative solver, such as the generalized minimum
residual method (GMRES) [8], is then used to solve
the sparsified linear system. The GMRES iterative
method with restarts, GMRES(r) is known as an effi-
cient method for solving non-Hermitian linear sys-
tems [9].

Although the smaller the threshold that is chosen
the more accurate is the solution, but with an
increased number of nonzero entries, thresholding
introduces error. Alternatively, DWT based precondi-
tioners for the dense linear system is used. Several
DWT based preconditioners has been developed in
the literature and has been found to be effective for a
wide class of matrices [9—12]. These preconditioners,
namely; the standard DWT, the DWT with permutation
{DWT Per), and the Modified DWTPer (DWTPerMod),
will be used for solving our dense linear system and
their effects will be illustrated numerically.

For both the sparsified linear system and the
DWT based peconditioned linear system, the num-
ber of iterations required to find a solution within a
specified accuracy, the convergence rates of the
residual and the time taken by the CPU will be con-
sidered as comparison minutes between different
preconditioners.
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The comparisons are obtained for the problem of
acoustic scattering on an acoustically hard sphere due
to the availability of analytical solution. The availabil-
ity of analytical solution helps in estimating the errors
resulting from numerical and approximation tech-
niques used.

2. METHOD OF MOMENT FORMULATION
OF ACOUSTIC SCATTERING

The equivalent boundary integral formulation of
acoustic scattering problem, which is valid for an
acoustic medium B exterior to a finite body B with
surface § on which a unit normal n, pointing into B', is
defined. The body is submerged into an infinite linear
acoustic medium. When a harmonic acoustic wave ¢’
impinges upon the body B, the resulting integral equa-
tion for smooth boundaries has the following form;

C(P)9(P) o
= [(0@2ULD y(, ) 22D) s, + ang'(P).
n on
S
This equation is called the surface Helmholtz integral

equation where ¢(P) = ¢(rp)e™® at a point Pand Qisa
point on the body surface.

The free-space Green’s function y for the Helm-
holtz wave Eq. (1) is given by

W(P,0) = e /R,

where R is the distance between the field point P and
a source point J, and # is the outward directed normal
at . The coefficient C(P) is defined at P on S provided
that there is a unique tangent to S at such a P, as fol-
lows:

0 for Pe B
4w for Pe B.
2w for Pe §

cp) =

When P occupies a point on the surface .S where there
is no unique tangent plane ([13] and [14]).

Considering an axisymmetric body and applying
hard-scattering boundary condition (g—d) = O), the
n

integral in Eq. (1) can be rewritten using a cylindrical
coordinate system (p, 0, z) as follows:

—ikR(P,Q

Lj¢<Q)[ J 7o

where the axisymmetric assumption implies that the
field ¢(P) and its derivative are independent of 0(P)

de(Q)}p(Q)dL(Q), 2
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and the differential area element is defined as

ds(Q) = p(Q)do(Q)dL(Q),

where dL{() is the differential length of the generator L
of the body at a surface point O, where (J now is inter-
preted as an arbitrary point on L only.

The MoM method can be used, with orthogonal
bases functions to approximate the unknown function
0, to convert the integral equation into a system of
equations. For different node points ip and assuming
the index of surface elements ig, the following dis-
cretized form of Eq. (1), for N nodes on the surface,
can be written as follows

A¢ =B, (3)
where A is an N x N matrix. ¢ and B are N vectors. An

example for the hard scatterer where 9 _ 0, we can
n

write

N
Al 1) = lep(iq)dL(iq), Iy # iy,
=1
v “4)
A(iy, i) = ZIlp(iq)dL(ilq)—Zn, i, = i,

=1
and
B(i,) = -4n¢'(i,) Vi, = 1...N, (5)

where ¢ is an N-dimension vector representing the
field strength on the scatterer surface and ¢’ is the inci-
dent field. Equation (3) is obtained using the colloca-
tion version of MoM which employs a delta function
as a basis function.

3. DWT OF SYSTEM MATRIX

For electromagnetic problems, it was reported that
almost identical results are obtained using Daubechies
and wavelet-like bases [15] and [16]. Daubechies
wavelets [17] are strictly localized in space and
approximately localized in spatial frequency.

The wavelets can approximate finer resolutions
near boundaries and corners of scattering surfaces. In
general, classical wavelets seem to be good in comput-
ing low frequency scattering and antenna problems
[18]. For these reasons and due to similar mathemati-
cal formulation of acoustic scattering, Daubechies
wavelets are more appropriate for our problem. Many
recent works employed Daubechies wavelets in solving
scattering problems [19—22].

The standard DWT, based on Daubechies com-
pactly supported orthogonal wavelets [20, 21] is a lin-
ear transformation that transforms a given smooth
vector in the standard basis to a wavelet basis in which
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most coefficients may be small or nearly zero. Let v=

"=(sy, s, ..., 5. )Tbeavectorof length #, such that

n = 2K where k is an integer. Then the level / < k wavelet
transform of v is defined by the following recurrence
relations

m—1 m—1
(+1) _ ! I+1y _ !
S; = Zhl-S<l-+ 2j>n/21’ d]( = Zgls<,-+2j)n/21, (6)
i=0 =
where m is the order of compactly supported wavelets,
(m), refers to m mod n, hy, h{,..., h,,_ are the m low-

pass filter coefficients, and g, gy, ..., &» _ 1 are the high-
pass filter coefficients derived from Ay, 4, ..., A,,_ as
in [4] by the following relation

= (-D'h,_,_;, ()

i=0,1,..,m—1.The s](-l+ b represent weighted aver-

ages of the elements ofsl<,-+2ﬁ L= 0,1,..,m—1and
nf2

the d](-l+ Y are weighted differences of the same ele-
ments. For a smooth vector, we expect the values of

elements of d](-l+ Y to be small compared with that of

s](-l”). In matrix form, a level £k DWT of a vector v

defined as follows

v=Wv, (8)

where
W=WWwW_ ., . Wv )
and W, /=1, 2, ..., kis an n x n orthogonal matrix.

Implementation of the DWT and inverse DWT in
terms of matrix multiplication would be expensive, so
in practical the recurrence formulas (6) are used to
implement the transformation and are referred to as
Fast Wavelet Transform, FWT and inverse FWT. The
cost of applying a level £ transform FWT and Inverse
FWT of an n-vector is O(nlog,n). The 2-Dim FWT of
an z x n matrix is made up of n vector FWTs in the col-
umn direction and n vector FWTs in the row direc-
tion. Hence the total cost of a level £ 2-Dim FWT of
an n x n matrix is O(n*log,n).

The Galerkin’s discretized form of the integral
Eq. (3) is transformed using DWT, by the orthogonal
wavelet transform matrix W as follows

WAW'W¢ = WB, (10)

where A is the Galerkin’s moment matrix, ¢ is the
unknown wavelet amplitudes vector, B is the incident
field vector defined at the surface points. As such,
Eq. (10) can be rewritten as

A6 = B (11)
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Since W is an orthogonal matrix, the spectrum and

pseudo-spectra of A will be the same as those of A, so
convergence will not be affected by the transform.

A sparse approximation A to the transformed

matrix A in (11) is obtained by thresholding. That is,
setting to zero all elements whose magnitude fall
below a chosen threshold. The smaller the threshold
the more accurate the approximation is, but at the cost
of an increased number of nonzero entries. If A is not
smooth enough, or there exist areas of non-smooth-
ness, then the DWT will fail to give a sparse matrix.
A possible measure of non-smoothness of a matrix A
would be to consider finite differences along the rows
and columns, see [10] and [12]. That is for each ele-
ment a; ; of A (i, j # n) we compute the infinity norm of
the vector whose components are the differences a; ;

a;,1,;and a; ; — a; ;1. This norm is simple to 1mple—
ment and 1dent1ﬁes areas of non-smoothness of A.

If A is sufficiently smooth we are able to find
a sparse approximation A to A, which can be used

efficiently. Then, solving the sparse system

A¢ = B (12)

using the GMRES method without preconditioning.

A solution ¢ can be, also, obtained directly by solving
the original system of Eq. (3) after applying the inverse
DWT.

However, approximately, A is spectrally equivalent
to the original matrix A, that is, with GMRES the
number of iterations are the same. Therefore, if the
original matrix needs preconditioning, we need to pre-
condition (12) a well.

4. WAVELET-BASED PRECONDITIONERS

In this section, we solve (11) using preconditioned
GMRES method. The wavelet-based preconditioning

looks for a sparse approximation M to A, M = A such
that the following Eq. (13) has the same solution as
(11), but with more favorable spectral properties.

M 'Ap = M'B. (13)
The iterative linear’ solver, GMRES method, precon-
ditioned by M, converges rapidly if M efﬁ01ently

apprOXLmates A in some way, i.e. the matrices M~ 1A

and AM ! are close to the identity matrix. The wave-
let-based preconditioners found in the literature
namely; the standard DWT preconditioner with band
cut [17], the DWT with permutation (DWTPer) pre-
conditioner [10], and the modified DWT with permu-
tation (DWTPerMod) preconditioner [23] are effi-
cient preconditioners for the acoustic scattering prob-
lem, [10]. Mainly these types of preconditioners are
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Fig. 1. Matrix A for N = 32.

based on the idea of splitting the matrix into the sum
of a smooth matrix and a band matrix and then com-
pressing the smooth part by means of a DWT. We
review these preconditioners briefly.

Usually a ‘finger’-like sparsity pattern results after
a standard DWT is performed on a matrix A which is
smooth but with non-smooth diagonal band. The pat-

tern of thresholded transformed matrix, A, can be
considered as a preconditioner which has the disad-
vantage of increasing number of nonzero entries dur-
ing the LU factorization step of the GMRES iterative
method. This is referred to as the fill-in property. To

avoid this, a suitable band form M of A is introduced
[23]. Such a pattern may be used more advantageously
than a finger-like one. Then, M~! is used as the pre-
conditioner to the linear system (11) solved using
GMRES method. Thus, the solution to (11), ¢, is

found by applying the inverse DWT of ¢ . This precon-
ditioner is referred to as the standard DWT with band
cut preconditioner.

Here the band size of M determines the cost of pre-
conditioning step. For a small band size, the precondi-

tioner may not approximate Aﬁ1 accurately, while
increasing the size causes each iteration to be too
expensive.

Alternatively in [10] a preconditioner was constructed

by permuting the rows and columns of matrix A,
denoted by DWTPer, to avoid the creation of finger
pattern matrices and form a banded matrix. The per-
muted DWT would give

A = WAW', (14)
where
W = PW (15)
ACOUSTICAL PHYSICS Vol. 55 No. 4 2010
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nz=~6188
Fig. 2. Standard DWT with thresholding, N = 128.

and P is an n x n permutation matrix. This implies that
the permuted DWT can be implemented either
directly using (15) or indirectly using P after a standard

DWT has been applied. A band form M of A is
selected with an increase in bandwidth by at most
m(2L—1 —1), for alevel L DWTPer, as in [10]. Such a
pattern may be used more advantageously than a fin-
ger-like one. Then, M~ is used as the preconditioner
to the linear system (11) solved using GMRES
method.

This preconditioner have been demonstrated to be
effective for matrices that are smooth with non-
smooth diagonal bands only [10]. However, as our
problem is smooth, but with both diagonal and off-
diagonal non-smooth bands, see Fig. 1. It will no
longer be possible to find a suitable bandwidth to

include all of the required entries of A and thus the
DWTPer preconditioner will not be a close approxi-

mationto A.

A better preconditioner, suitable for our problem,
is the modified DWTPer preconditioner found in [12]
that will include all large entries corresponding to the
non-smooth bands and that corresponding to the
weighted averages. The DWT Per preconditioner is fur-
ther improved in [11] and [24]. This is denoted by
DWTPerMod preconditioner. In constructing this
preconditioner, any non-smooth areas are identified
and the matrix is permuted to arrange any localized
non-smooth off-diagonal bands to the bottom or the
right-hand edges of the matrix to form a bordered
block matrix. Then, a DWTPer is applied to the per-

muted system. The resulting transformed matrix A has
an arrow-shaped sparsity pattern above some thresh-
old with predicted increase in bandwidths [12]. This
pattern suffers from little fill-in during LU factoriza-
tion step.
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Table 1. Number of iterations of GMRES method with to

1=10""°
N |32 (ka=5)|64 (ka = 10)|128 (ka = 10)|256 (ka = 20)
P1 11 15 14 20
P2 11 15 15 25
P3 7 14 10 17
P4 6 6 9 17
P5 7 9 4 10

Table 2. CPU-time in ms of GMRES method

N 32 64 128 256
P2 5.17053 7.86619 5.24753 7.31470
P5 4.02172 1.78506 1.41279 1.48344

Table 3. % Normalized error in computation

N 32 64 128 256

P1 0.03200 0.07900 0.04700 0.14100
P2 0.0310 0.01500 0.01700 0.10900
P3 0.0300 0.11000 0.04700 0.15600
P4 0.00100 0.07900 0.09300 0.12500
P5 0.00100 0.01500 0.01600 0.06300

Further, in [24] tighter bounds for the bandwidths
are given and an optimal level / of DWTPer is deter-
mined, inherently, based on the minimization of the
number of nonzero entries.

Based on the modifications to the DWTPer pro-
posed in [12] and [24] we constructed the DWTPer-
Mod preconditioner and found it to be effective in
that it reduces both fill-in of LU factorization and
the number of iterations required for convergence
to a required tolerance. Accordingly, both computa-
tional complexity and convergence rate are
improved.

The cost associated with the construction of the
preconditioners is mainly in the application of the
wavelet transform. Other costs related to permuta-
tion of the rows and columns, or thresholding and
cutting are not expected to have a significant value.
Thus, the cost in terms of flops of performing a stan-
dard DWT, and similarly that of DWTPer and

DWT-PerMod, order m, level / to an n x n matrix is
[12] 8mn?(1 — 1/2)).

If the preconditioner is effective, this additional
cost in constructing the preconditioner could be
acceptable due to the reduction in the number of
GMRES iterations required for convergence to the
required tolerance.

5. RESULTS

The integral equation formulation of the acoustic
scattering problem as defined in (1) is solved using the
proposed discretization scheme considering different
M divisions on the surface of an acoustically hard scat-
terer.

The incident field is taken as a plane wave and the
field frequency is taken over a wide frequency range
covering the range of ka = 1...20 while k is the propa-
gation constant and a is the scatterer characteristic
length.

The results obtained are, then, compared based on
a normalized error from analytical solution. The nor-
malized error is defined as the ratio between the field
(¢) error to the analytical solution as follows

"(I)wvl B (I)ana"

Normalized error = *~——2"20

(L

where wv/ is the computed numerical solution using
the studied methods, ana is the analytical solution
given in [25] for a hard acoustically sphere, and ||.|| is
the /, norm.

(16)

On the other hand, the integral equation of acous-
tic scattering in (1) is solved for a different wavenum-
bers k and sphere radii a with an incident plane wave
on an acoustically hard sphere for obtaining ¢,,.;. We,
then, illustrate the effectiveness of the presented pre-
conditioners through comparing the performance of
GMRES using the following methods

P1  Diagonal preconditioner.

P2 DWT matrix without preconditioning.
P3  Standard DWT Preconditioner.

P4  DWTPer Preconditioner.

PS5 DWTPerMod Preconditioner.

The choices of wavelet family are large and the
matrix dimension is dependent on the wavenumber
and should be in the order of integer power of two,

Table 4. Number of Iterations of GMRES method for N = 128 with different values of ka

ka 10 11.12 12.24 13.36 14.48 15 15.6 16.72 17.84 18.96

P2 15 15 15 16 16 17 17 19 20 20

P5 4 5 5 6 7 7 8 9 10 10
ACOUSTICAL PHYSICS VWl. 56  No. 4 2010
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Fig. 5. Convergence behavior of P1—P5 methods.

i.e. (2"). So, we confine the dimension to selective
values as indicated in Table 1. In each case, the nor-
malized wavenumbers, ka, are taken in a wide range
between 1...20 and the wavelet family is taken as
Daubechies of order 4. In each case above using
GMRES, we restarted GMRES after 20 iteration
steps and stopped the iteration when the relative
residual norm fell below 10-°.
ACOUSTICAL PHYSICS Vol. 55
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Firstly, Table 1 lists the number of iteration steps
required by the GMRES method to converge to the
required tolerance, for the wavenumber ka and
problem size N. The problem size is taken to be pro-
portional to the wavenumber [26]. Secondly, the
corresponding CPU-time for each case is given, in
Table 2. In Table 3, the normalized error as defined
in (16) is presented for P2 and P5 where one could
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% error

18 ka

Fig. 6. Normalized error versus wavenumber ka for DWT
and DWTperMod preconditioners for N = 128.

observe the low accuracy of computing the solution
directly from the transformed system which could
be acceptable for some applications requiring less
computational time. Figures 2—4 show the sparsity
pattern of a level L = 3 and N = 256 for the DWT,
DWTPer, and the DWTPerMod preconditioners. In
addition, the residual rate of convergence is given in
Figure 5 to show the convergence behavior of the
different methods.

As mentioned in the previous section the construc-
tion of the DWT-based preconditioners encounters an
amount of overhead. This is compensated by the
reduction in the number of iterations especially for
higher dimensional problems, as illustrated in Table 1.
The DWTPerMod preconditioner outperforms the
other preconditioners with the number of iterations
for high dimensions and less number of operations per
iteration step due to the structure of preconditioner, as
shown in Fig. 4. As mentioned in Section 4, an opti-
mum level of transform is, inherently, computed to
reduce the number of nonzero entries of the trans-
formed system matrix. In general, the number of iter-
ations using GMRES is reduced using DWT-based
preconditioner methods.

Another point of comparison is obtained by fixing
the problem size to a sufficiently large number (N =
128) and comparing the performance of different solu-
tion methods based on the number of iterations and
solution accuracy. In Table 4, the number of iteration
steps of the GMRES method is depicted for each solu-
tion method at different normalized wavenumber (ka)
with fixed number of discretization points at 128. For
this case, the corresponding normalized error is pre-
sented in Fig. 6.

6. CONCLUSIONS

The dense matrix of an integral equation is sparsi-
fied and solved using DWT. A typical case of acoustic
scattering is considered for illustrative purposes. Dif-
ferent sparsificatoin approaches are considered using
DWT. The results show that DWT-based precondi-
tioners are efficient for acoustic scattering problem.
This is due to the smoothness property of its coefficient
matrix. It has been shown that further study of the
matrix structure could greatly improve the computa-
tional cost using an iterative solver. Several DWT-based
preconditioners were implemented and have shown to
outperform the diagonal preconditioning.

The use of the thresholded DWT matrix has shown
to improve the computational time as dealing with a
sparse matrix is solved more efficiently than a dense
matrix. This improvement is on the expense of system
accuracy, which is acceptable in some applications.
DWT-based preconditioners achieve higher accuracy
on a slight increase in the computational load of con-
structing the preconditioner.

Different cases of acoustic scattering on a hard
acoustical sphere are studied on a wide range of the
normalized wavenumber ka = 1...20 and the wavelet
family is taken as Daubechies of order 4. GMRES
iterative method is used in solving the resulting system
of equations for acoustic scattering problem and com-
pared to direct DWT solution and standard diagonal
preconditioner.

The study shows that DWTPerMod Preconditioner
and standard DWT give higher accuracy than the solu-
tion obtained directly from the transformed system.
The sparsity pattern improves in the case of employing
DWTPerMod Preconditioner.

The construction of the DWT-based precondition-
ers encounters an amount of overhead. This is com-
pensated by the reduction in the number of iterations
especially for higher dimensional problems. The
DWTPerMod preconditioner outperforms the other
preconditioners with the number of iterations for high
dimensions and less number of operations per itera-
tion step due to the structure of preconditioner. In
general, the number of iterations using GMRES is
reduced using DWT-based preconditioner methods.

Another point of comparison is obtained by fixing
the problem size to a sufficiently large number (N =
128) and comparing the performance of different solu-
tion methods based on the number of iterations and
solution accuracy. In this case, the DWTPerMod pre-
conditioner outperforms the other preconditioners.
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