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A b s t r a c t — T h e  p o s s i b i l i t y  i s  s t u d i e d  o f  a p p l y i n g  s p r i n g  b o u n d a r y  c o n d i t i o n s  t o  d e s c r i b e  p r o p a g a t i o n  o f  e l a s t i c  

w a v e s  i n  l a y e r e d  c o m p o s i t e s  w i t h  n o n p e r f e c t  c o n t a c t  o f  c o m p o n e n t s  o r  i n  t h e  p r e s e n c e  o f  g r o u p s  o f  m i c r o d e 

f e c t s  a t  t h e  i n t e r f a c e .  S t i f f n e s s e s  i n  s p r i n g  b o u n d a r y  c o n d i t i o n s  a r e  d e t e r m i n e d  b y  c r a c k  d e n s i t y ,  t h e  a v e r a g e  

s i z e  o f  m i c r o d e f e c t s ,  a n d  t h e  e l a s t i c  p r o p e r t i e s  o f  t h e  m a t e r i a l s  s u r r o u n d i n g  t h e m .  I n  d e r i v i n g  t h e  v a l u e s  o f  

t h e  e f f e c t i v e  s t i f f n e s s  p a r a m e t e r s ,  t h e  B a i k — T h o m p s o n  a n d  B o s t r o m — W i c k h a m  a p p r o a c h e s  a r e  a p p l i e d ,  a s  

w e l l  a s  t h e  i n t e g r a l  a p p r o a c h .  T h e  c o m p o n e n t s  o f  t h e  s t i f f n e s s  m a t r i c e s  a r e  d e r i v e d  f r o m  c o n s i d e r a t i o n  o f  a n  

i n c i d e n t ,  a t  a  r a n d o m  a n g l e  t o  t h e  i n t e r f a c e ,  p l a n e  w a v e  i n  t h e  a n t i p l a n e  c a s e ,  a n d  a t  a  n o r m a l  a n g l e  i n  t h e  

p l a n e  c a s e .  T h e  e f f i c i e n c y  o f  t h i s  m o d e l  a n d  t h e  p o s s i b i l i t y  o f  u s i n g  i t s  r e s u l t s  i n  t h e  t h r e e - d i m e n s i o n a l  c a s e  

a r e  d i s c u s s e d .
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1. I N T R O D U C T I O N
A  precursor to destruction of a sample of a compos

ite or homogeneous material is usually the formation 
of microcracks; their subsequent growth into macroc
racks makes further operation impossible or danger
ous. The occurrence of cracks probably both at the 
manufacturing stage and during operation are a conse
quence of material wear close to critical loads, etc. The 
occurrence of new composite materials only increases 
the urgency in detecting internal inhomogeneities and 
restoring their parameters [ 1 , 2 ], in particular, detect
ing internal and surface defects by ultrasonic nonde
structive control [3, 4], which requires the presence of 
effective mathematical models describing the diffrac
tion of elastic waves on defects [1]. O f  particular inter
est are delamination or zones of discontinuity and 
their oscillations under dynamic looding; these are 
considered in the present article.

The mathematical model of a crack with stress-free 
faces is frequently used. However, in a number of 
cases, with respect to a zone of nonperfect contact or 
a concentration of microdefects, i.e., regions with 
alternating zones of continuity and discontinuity in 
displacements, this is insufficient. In practice, oscilla
tions ofbodies with cracks, which can be curvilinear or 
branched, occur quite often with acting of crack faces 
[5]. In other words, a complete description of a real 
crack is an extremely difficult mathematical problem, 
since it requires allowance for the complicated geom
etry and nonlinear interaction of crack surfaces. 
Through a zone of nonperfect contact, an energy cur

rent of nonzero power takes place, whereas there is no 
energy flow through crack faces. Therefore, owing to 
smaller dispersion on delamination, their detection is 
more complicated than revealing cavities and cracks.

To mathemically describe the dynamic behavior of 
a crack medium or a zone containing internal defects, 
it is possible to introduce a distribution of microcracks 
(cavities) [6—8 ] or, on the contrary, spots of contact 
between nonadjoint layers [9]. Other approaches to 
simulating damaged materials have been developed: 
replacement of the damaged zone by a thin viscoelas
tic layer, including combination with the introduction 
of spring boundary conditions (SBCs) considered in 
[10, 11]. In any case, to describe the behavior of an 
elastic medium with delamination, information on the 
damage (fracturing) in the area is necessary: the num
ber, orientation, sizes of microcracks, etc.

The use of SBCs seems a rather effective tool in 
simulating damaged interfaces and rough contacting 
surfaces [11, 12]. First, SBCs are more general bound
ary conditions than those on a single crack, and they 
make it possible to describe a wider class of delamina
tions. Secondly, in simulating delaminations, is often 
simpler to construct the solution for the SBCs than it 
is for multiple cracks. Third, in solving problems on 
identifying defects, SBCs can give knowledge on the 
sizes of delamination and degrees of damage. To 
obtain this knowledge, a relation between the con
stants in SBCs and delamination parameters is neces
sary, and determination of this relation is the main 
objective here. Below, SBC constants are derived from 
consideration of the plane and antiplane problem and

848

mailto:m_golub@inbox.ru


PROPAGATION O F ELASTIC WAVES IN  LAYERED COM POSITES 849

their possible further application is discussed in simu
lating a delaminations interface, including the three
dimensional case.

I f  in the majority of currently avaiable works, dam
age to a homogeneous sample has been considered [ 1 , 
4, 5, 7 —19], in the present work, a generalized theoret
ical conclusion is considered on the constants in SBCs 
for the case of a delamination interface at the joint of 
two different isotropic materials, which was begun in 
[20]. In deriving the stiffness values for SBCs, an 
assumption is used on the relative smallness of the 
characteristic crack size relative to wavelengths of an 
incident field. Such an assumption can be used for a 
rather wide range of parameters. Indeed, if the sizes of 
the cracks forming the delamination are larger than 
the wavelengths, they can be considered as individual 
macrocracks because they are potentially dangerous 
stress concentrators [8].

In this study, first, the SBCs are formulated in a 
general form, and then the relation of constants with 
elastic moduli of contacting materials and delamina
tion characteristics is derived. In the antiplane case, a 
constant is derived from consideration of a plane wave 
incident at any angle, and it is demonstrated that 
under assumptions of proportionality of wavelengths 
and delamination sizes, the stiffness value hardly 
depends on the angle of incidence. For the plane prob
lem, the normal angle of incidence of P and SV waves 
is considered in order to avoid considering types of 
waves that differ from an incident wave. In both cases, 
the derivation scheme is in many respects similar to 
the one used in [9]. A t  the first step, propagation of a 
plane wave from one half-space to another with a sin
gle crack on the interface is considered, and an asymp
totics for the jump function of displacement on crack 
faces is derived. Then the solution for a single crack is 
generalized to the case of crack distribution by averag
ing over the ensemble [21]. From  the equality of the 
transmission coefficient for crack distribution and the 
transmission coefficient for two half-spaces connected 
by the distributed spring, the dependence of stiffness 
in SBCs on the damage parameters [9] is derived. In 
conclusion, the applicability range of these models is 
analyzed.

2. I N T R O D U C I N G  S P R IN G
B O U N D A R Y  C O N D I T I O N S

To describe the dynamic behavior of damaged 
zones, a distributed set of cracks is often used. Here, it 
is necessary to note a number of works by Achenbach 
et al. (for example, [13, 14]), where passage of plane 
waves in space and scattering on different variants of 
crack distribution has been considered, as well as [8 ], 
which includes a review of methods using averaging 
approaches. In particular, using the example of the 
reflection coefficient, the results following from 
approximated theories [15] were compared. As well, a 
solution has been constructed for the case of identical

randomly oriented cracks [16, 17] and cracks whose 
lengths change according to the normal distribution 
law [17]. The reflection coefficient in both cases is no 
more than twice as large as the periodic array. On the 
whole, the studies indicate a sufficiently small distinc
tion between amplitudes in the far zone with various 
variants of crack distribution, but with identical dam
age to the interface. In many cases, this makes it pos
sible to select the simplest variant of defect distribution 
for each specific problem.

It is quite natural to use such arbitrariness in intro
ducing a simpler, from the mathematical standpoint, 
spring model, which assumes replacement of the dis
tributed set of the interface cracks by SBCs given on a 
surface containing or approximating this set. Transi
tion occurs from the assumption of equivalence of 
amplitudes of the given spring and crack model in a 
zone far from delamination. In the quasistatic approx
imation, Baik and Thompson [10] introduced SBCs to 
describe oscillations of an unlimited damaged surface 
between two half-spaces. SBCs were also derived by 
Bostrom and Wickham [9] from the solution to the 
problem on oscillations of a partially closed crack. 
Their efficiency has been demonstrated in a number of 
works on simulating incomplete contact between sur
faces of identical materials (see, e.g., [ 1 1 , 1 2 , 18]); this 
was also shown experimentally in [2 2 ].

In the general three-dimensional case, SBCs at 
point x  of surface S  with normal n can be written in the 
form

Tn(x ) = k ( Un _ (x ) -  Un + (x )) , x e S;
к is a 3 x 3 stiffness matrix; n± are external and internal 
normals to the surface at the considered point x; Tn are 
the normal and tangent components of the stress ten
sor on the area with a normal n in x; and U is the dis
placement vector. In the isotropic case, it is possible to 
choose a local system of coordinates in x  in such a 
manner that the three diagonal components of the 
stiffness matrix remain nonzero:

к 11 = Kx > к 22 = Ky > к 33 = Kz.
Further expressions are derived from consideration of 
the case of strip cracks for stiffnesses к  via the fracture 
and elastic properties of materials, i.e., for delamina
tions strongly extending in one of the directions.

3. S H E A R I N G  C O M P O N E N T  Ky 
( A N T I P L A N E  C A S E )

3.1. Single Interface Crack
We consider first the transmission of a plane elastic 

S H  wave from one half-space to another, with an 
interface strip-like crack located on their joint. The 
Cartesian coordinate system is chosen so that axis z  is 
orthogonal to the interface on which crack |x | < l is 
located, and a wave is incident to the interface at angle
0. During propagation of an S H  wave in the Oxz plane,
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the displacement vector has only one nonzero compo
nent uy. The harmonic factor exp(—m t)  is from this 
point on omitted (ю, circular frequency; t, time).

The nonzero components of the stress tensor, 
according to the Hooke law, are expressed through dis
placements as follows:

Elastic Lame constants Xj , pj , density of materi
als pj , and wave fields are designated by upper index 
j  =  1  for the upper half-space, and j  =  2  for the lower. 
The harmonic oscillations in each of the isotropic 
half-spaces are determined by the equations written 
with respect to displacements:

j '  d u

\ d x 2

d U  ̂  

d z2 J
р ю 2и , j  =  1 ,  2 .p ( 1 )

J  _  d Uy J
Jyx p dx  , ° yz

For definiteness, we set it such that the plane wave 
is incident from the bottom half-space z  < 0 ; as well, it 
partially passes, and is partially reflected by, the inter
face and a crack. In other words, a full wave field is the
superposition of field Ууln without defect and the field
scattered by the crack Uy, sc. The field without defect

inu
y

1 in ik4(z cos 0 + x sin 0) — ik\( - z cos 0 + x sin 0)
uy _  e + R e  , z  < 0 ,

2, in ry->— ik4(zcos0i + xsm01)
uy _  T  e , z  > 0

(2 )

is written via the amplitude transmissivity and reflec
tion coefficients

p 1 k4cos0  -  p2k4cos0 1 
R _  ------------------------------ ,1 »1  r\ 2 j 2 /лp k4cos0  + p k4cos01  

_  2 p 1k4cos0
1 / 1  ^ 2 j 2p k4cos0  + p k4cos01

from the Fourier symbols of Green matrices of half
spaces Kj (a , z) and Fourier transforms V(a) of the 
function introduced for opening crack faces (see [23] 
for more detail)

Vy (x) _  u )  sc(x, 0 - ) -  u2  sc(x, 0 +).

Substitution of the integral representations into the 
boundary conditions leads to the equation

Here k m =  ю/Sm , m  =  1 , 4 are wave numbers, k4 sin0  =
k4sin0j, and S4 is the velocity of S waves ( is the 
velocity of R  waves).

Scattered and incident fields satisfy the equation of 
motion (2 ) and the boundary conditions at the inter
face:

II 2, sc
uy , |x| > l

1 , sc
J yz _

2, sc
J yz , |x > l ,

1 , sc
J yz _

2, sc
J yz , |x < l .

--1- у  (a )  V( a )  exp ( i a x ) da

_  -  ip 1 kjcos0( 1 -  R  ) , |x| < l

with the kernel
p J JL ( a )  _  —f -----------,

p J  + p J

J  _  /J( k4)  -  a 2, Im J  > 0, Re J  < 0.

г (4)

The field scattered by a crack is written in the form of A n  unknown displacement jump vy(x) is expanded 
Fourier integrals in a series,

Уу _

J K 1 (a , z )L ( a )  V (a )  exp(- i a x ) d a , z  < 0,
- д а

да

y(x ) _  X  a«V «(x / 1) ,
П _ 1

(3) by Chebyshev second-order polynomials,
J K 2(a , z )L ( a )  V (a) exp(- i a x ) d a , z  > 0

V « ( s) _
sin(narccoss)

sin s

да

да

да

(5)
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Fig. 1. Geometry of the single-crack problem. Fig. 2. Geometry of the problem for crack distribution.

which comprise the complete set of functions at the 
interval [—1 , 1 ] and account for behavior o f the 
solution at edges [24]. Substitution of expansion (5) 
into integral equation (4) and subsequent projection 
on gives an infinite algebraic system of the equa
tions:

да

Qnn'a n
n = 1

lr^kj &4cos 6  sin 01
1 1  2 2 

£44 cos 0  + C44 cos 01
^ n  ( k^sin 0 l) ,

where x̂ n(a l)  =  nlinJn(a l) /a  is the Fourier transform 
from with transform parameter a , and the coeffi
cients in the left-hand side are Fourier integrals:

Qn = _1  Г_£44
2  n  J r 1 G

2 1 2
44 G  G

2 2  
£ 44 G

¥ n(a l ) ¥  n(a l )a  d a .

да

да

Owing to the assumption of relative smallness k \ l 
for the Fourier symbol of the kernel of integral 
equation (4), it is possible to extract the linear part,

2
L ( a )  = ipa + O( 1/a ) , p = — 1 ,

q + q
from a sufficiently small nonlinear component. 
Neglecting the latter, it is easy to obtain an asymptotic 
solution,

3.2. Distribution o f  Interface Crarks

As the next step, we consider the problem where 
instead of one crack with a width 2 l, there is an infinite 
set of interface cracks with width 2l (see Fig. 2). It is 
supposed that defects are distributed randomly and 
interaction between cracks can be neglected. In addi
tion, it is possible to generalize it to the case of cracks 
of various size; however, this only complicates the 
analysis without leading to substantial corrections in 
solution [19] and the transmission coefficient is only 
necessary to derive SBCs.

A n  incident wave field free of defects, as it was done 
earlier, is determined by Eq . (2), and an exact expres
sion cannot be obtained for a total wave field uy =
Uy  + uy  owing to randomness of cracks. Instead of an 
exact solution, which, generally speaking, is not of 
much interest, ensemble average of the scattered field 
determined far from the half-space boundary is calcu
lated. To determine ensemble average of a scattered 
field, the Betty-Rayleigh reciprocal theorem is suit
able, applied to u .У  and uyn obtained from uin by 
replacement of 0  :=  —0 :

in sc sc inJ (uy  Gy j  -  uy  Gy j ) Uj d S  = 0,
S ~

V (a )
ik \ lJ 1 ( a  l) 

2  ap ( 1  - R  ) ,

or after application of an inverse Fourier transform,

v° ( v )  = 2k J  l2 -  x 2 ,

K  = i ( q 1 - i -  [ i ^ c o s s Q c o i s 0 ! 2k 1

1 , 1  n 2, 2  n 4 4. 
q  k4c o s 0  +  q  k4 c o s 0 1

(6 )

where nj is the normal external to a contour. The rect
angular contour S-  relies on points x  =  ±x0, z  =  — z0, 
and z  =  0—, and values x0 and z0 are chosen at random. 
Similarly, the Betty-Rayleigh theorem is applied to
usy° , uyn for contour S+, symmetric to S — relative to axis 
z  =  0. If  we combine the obtained identities and apply 
them to the sum of averaging over ensemble of cracks, 
i.e., averaging of the field over all possible crack posi
tions [2 1 ], then as a result, integrals along vertical seg-
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ments x  =  ±x0 will not make any contribution and only 
integrals along horizontal segments remain:

г =  Z o

I l( < 0  -  < uD G 7z) dx
Z = - Zo

1v
+  Ivy G ^dx) = 0 .

D

(7)

Here, D  is the damaged part of the boundary between 
half-spaces, and angle brackets denote the mean value 
over the ensemble of cracks. As well, the scattered 
wave field averaged over the ensemble represents plane 
waves extending from the interface in directions ±z:

_  i k , ( z cos0 +  xsin0)

P  e , z  < 0 ,

+  i k (̂ z  cos 0j  +  x sin 0j )

P  e , z  > 0 .

(8 )

The first term in (7) turns to zero, the second becomes 
simpler after substitution of expressions (2 ) and (8),

Here, C  =  N cl/x 0 is the ratio of total length N c cracks at 
interval [—x 0, x0] to the length of the considered area,
i.e., damage. For the amplitudes of the scattered field 
from (7) and the law of conservation of energy follows

P  = - 1  ( 1  -  R -)C V y , P + = - 2  ( 1  + PT)CV y .

As a result, the full transmission coefficient

T  = T  + P+ = T  ( 1  -  1 CVУ) . (9)

For v y , it is possible to use expansion (5), then 
according to the properties of orthogonal Chebyshev 
polynomials, the mean amplitude of crack opening 
v y  =  n a 1l/2. I f  we use asymptotics (6 ) , the average 

value o f the crack opening displacement for low fre
quencies has an evident and convenient form: v° = 
nKl.

1  ( uyn GyZ -  My£“ ) dx = -2ikjcos Gp* 1 P  ( 2x0),
z = - Z0

and the third summand

1  v yG ^ d ^  = 2  ik \cos  0 p 1( 1  -  R  )

x ( 2x 0)C vyxPn( kjsinGl)
is expressed via the mean value of the function of 
opening crack faces,

i
V  1  1  vy (x  ) d x .

-l

3.3. Spring Boundary Conditions

The final stage consists in deriving the dependence 
between stiffness in SBCs and the parameters of the 
damaged interface. With this aim, we calculate the 
coefficient of transmissivity of a plane wave through 
two half-spaces, the adhesion between which is estab
lished by SBCs with unknown stiffness. The latter is 
determined from the assumption on equality of the 
transmission coefficients of the distributed spring and 
crack distribution at the interface.

Propagation of a plane wave through the boundary 
of the half-spaces connected by the distributed spring 
can be described by a representation similar to (2 ). 
Here, the amplitude coefficients of transmissivity and 
reflection

R

T

ip 1 kjcosGp2k^cosG1 + Ky(p 1kjcosG -  p2k^cosG1)
i p 1k4cos G1 p2 k2cos G1 + Ky (p 1 kjcos G + p2k2cos G1) 

2Kyp 1kjcosG
ip 1 kjcos Gp2 k^cos G1 + Ky (p 1 kjcos G + p2k^cos G1)

( 1 0 )

are determined from SBCs at the interface,
1 2 . 1 2 .

G yz = G yz = K y( u -  u ) .
In the transition to limit Ky ^  д а , wave fields can be
considered continuous, and coefficients R  and T  
coincide with R -  and T- ; at K y ^  0, full reflection 
takes place. To determine the value of Ky it suffices to

equate (9) with (10); i.e., to make the distributed 
spring equivalent to the crack distribution. It is prelim
inarily necessary to transform coefficients to the gen
eral form, which is done by expansion into a series at 
degrees Ky of transmission coefficient (10):

T  = T 1 -

1 1  2 2 \ ip k4cosGp k4cosG1 k -1
1 1  2 2 Kyp k4cosG + p k4cosG1

+  O ( k -  ) .
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Equating the latter and using (6), we can obtain the 
stiffness value of the distributed spring:

is expressed via the amplitude coefficients of transmis
sivity and reflection,

к
y

4 q V  ( 2 4'1(ksin9/)- 
C nl  q  + q2 V n l

R - =
1 1 2 2

c s k s -  c s k  s 
1 , 1 2, 2  ,Csks + Csks

T  =
2 C1k 1

1 1 2 2 
csk s + csk s

The latter expression can be simplified owing to the 
smallness of k41 with application of asymptotics for 
Bessel functions Jn(a )  ~ 2-nan/n! at small a:

к
y

1 2  4 q q
C  n l  q 1 + q 2 ( 1 1 )

The expression for stiffness (11) in SBCs coincides 
with the value obtained in [2 0 ] for a normal angle of 
incidence. Since ку does not actually depend on the 
angle of incidence, then SBCs can be applied to 
describe delamination of different dimensions in 
waveguides of any type (for example, layer, cylindrical 
structure, wedge, etc.). We should also note that for 
identical materials, stiffness value ( 1 1 ) is close to the 
one obtained at low frequencies by Achenbach and 
Lee in [15] from energy conservation law.

4. N O R M A L  к  A N D  S H E A R I N G  кх 
C O M P O N E N T S  ( P L A N E  C A S E )

Passing to determination of components Kz and кх 
of the stiffness matrix is done similarly that considered 
above, but already in the statement of the plane prob
lem (see Figs. 1, 2). The displacement vector in the
plane case has two nonzero components uy =  {Ux , Uz } 
and satisfies the Lame equations

and propagation vectors pP =  {0, 1} for the P wave and, 
correspondingly, pS =  {1, 0} for an S V  wave. For dis
placement vector usc of the field scattered by a crack, 
an interval representation similar in form to (3) is jus
tified (for more detail, see [23]).

In the plane case, we also apply the Galerkin 
method with expansion, in the general case, by Jaco
bian polynomials taking into account oscillation [24]. 
This oscillation is insignificant and can be ignored, 
having passed to simpler second-order Chebyshev 
polynomials:

да

{ Vx, v z } = X  a n Vn (x /l )  ■
n = 1

From  the assumption of smallness k] l with applica
tion o f integral approach [23], an asymptotic solution 
can be obtained,

(  \  
pv 0, x 
PV v 0, z

= iH P( iP2 "
V р 1 У

J? 2- x ,

(  \
Sv 0, x 
S

V v 0, z У
= iH S

'  P 1 " 
V -i'p2 У

2- x ,

cy11W  • u1 -  qyV  X ( V  X u1) + py®2u1 = 0,
J = 1, 2 ■ P 1

1C1

( ^ 1 + q 1 )q
+

2C1
s л 2 2 \ 2(A + q )q

(13)

For convenience, here we introduce C1 =  Ay + 2qy’ and
C2 =  qy. Similar to the antiplane case, first we consider 
a plane P or SV wave incident on an interface with a 
crack; accordingly, index s  =  1, 2 (Fig. 1). With inci
dence of an elastic plane wave at a random angle in 
each of the half-spaces, two types of waves are excited 
and the coefficients of transmissivity and reflection 
have a cumbersome form [25]. This would complicate 
the derivation of values for кг and кх; therefore, only a 
normal angle of incidence is considered at which there 
are no additional types of waves. A  field without 
defect,

inu
V  ik*z , t)— -iksZ~.p (e + R e  ) ,
s ГГТ- ik2sz

p R e ,

z  < 0 , 

z  > 0 ,
( 1 2 )

P 2
1 ___________________1 _

» 1 1 Л 2 2 ,A + q A + q

H s  =

1 2 , 1 , 2  

1 , - :2 , 2 ,
csk s + csk s

for the plane problem for an incident P and SV wave, 
respectively. Figure 3 shows the accuracy of asymptot
ics (13) for different combinations of elastic properties

2 1c iy  =  B c iy ; B  =  1, 2, 3, 4, and at identical Poisson coef
ficients vy =  Ay[2(Ay + q1] - 1  v 1 =  v2 =  0.3333, we can 
see a sufficiently small deviation of the asymptotic
solutions from an exact solution at small k 1 1 < 0.5.

Similarly to the scheme applied to the antiplane 
problem, we pass to solving the problem on multiple 
interface cracks (Fig. 2). The full transmission coeffi-
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R e ^ v 0 ,  г

Im vZ/vO), z

In order to take the final step in determining Ks it
is necessary to put Ts equal to transmission coeffi
cient (14) for the problem on stochastic crack distribu
tion [10]. The use of low-frequency asymptotics (13) 
makes it possible to obtain a complex-value expres
sion for

k s
8

n IC$ 1 -  H ,

which leads to energy losses in the system. However, at 
small values k] l , the material part prevails and, corre
spondingly, the constants for SBCs coincide indepen
dently of wave type:

KX = Kz C n l p 1

5. C O N C L U S I O N S
_P _0 PFig. 3. Real and imaginary parts of the ratio vz / vz

, , „ -P , . —0 Pbetween mean values of exact vz and asymptotic vz
solutions, adopting purely imaginary values, see (13).

cient through the interface with the crack distribution 
is expressed as

7  = 7 7 + P + = 7 7  ( 1 -  2  СН  (14)

via the mean values of the corresponding components 
of displacement jumps on crack faces of correspond
ing problems; that is, it depends on the type of the 
incident P or SV waves.

The field of displacements of waves incident at the 
interface of two half-spaces connected by the distrib
uted spring is similar to ( 1 2 ),

u
s. ik!z ~ -iklzp (e + Rse ),

s ̂  lkl zP 7se ,

z  < 0 , 

z > 0 ,

and the transmissivity and reflection coefficients at s  = 
P , S  are derived from SBCs:

We have considered an approach to studying non
perfect contact of interfaces based on application of 
SBCs. The main advantages of the spring model are 
boundary conditions for single delamination that are 
more general in comparison to the single-crack model 
(if к = 0, a crack occurs). In addition, in models for 
describing defect concentration zones, it is possible to 
use SBCs on the damaged surface instead of multiple 
cracks. From the assumption on equivalence of the 
model with stochastic small-crack distribution and 
SBC models, we have derived the relations between 
the stiffness and delamination parameters. Derivation 
is carried out in the antiplane and plane statements of 
the problem, and the obtained stiffness values are sim
ilar: they include fracturing, the characteristic size of 
cracks, and elastic moduli. For the antiplane problem, 
a solution is obtained for any angle of incidence, 
which under our assumptions of smallness of cracks 
and wavelengths, hardly depends on the angle, which 
demonstrated the possibility of applying the model 
both for delaminations of finite dimensions and in 
limited waveguides. Thus, we have demonstrated the 
possibility of applying the developed approach in the 
two-dimensional case and have derived the relations 
for stiffnesses к,-. The estimates obtained here for con
stants at the contact of different materials are in agree
ment with the constants obtained in [10] and [15] for 
identical materials.

r s  =
. 1 , 1 2 , 2 , , 1 . 1 2 , 2ч
lcsk scsk s + Ks(csk-s- c sk-s)

1 1 2 2 1 1 2 2 icskscsks + к  s (csk s + csk s) 2

77 = 2 K ŝ 1 k
1 1 2 2 1 1 2 2 

lcsk scsk s + K s( csks + csk s )

The developed scheme can be expanded with some 
changes for describing nonperfect contact of materials 
in the three-dimensional case, including anisotropic 
materials (nondiagonal stiffness matrix к). If  microc
racks have a clearly extended appearance (for exam
ple, along fibers in a composite), the stiffness values 
obtained in this study are applicable in this case.
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