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A b s t r a c t —The transmission of shear one-dimensional periodic perturbations through a layer of a nonlinearly 
elastic medium under the conditions close to resonance is considered. The layer separates two half-spaces 
consisting of a medium that is much more rigid, as compared to the medium in the layer. A  system of differ
ential equations is obtained for describing the slow variations in the amplitude and waveform of nonlinear 
strain and stress oscillations at the fixed boundary that occur because of the nonlinear properties of the 
medium while the other boundary performs arbitrary periodic motions in its plane. The period of these oscil
lations is close to the period of natural oscillations of the layer. It is shown that, in addition to continuous 
strain variations at the fixed boundary, strain variations containing strong discontinuities are possible. Rela
tions at the discontinuities are obtained. The analogy between the equations derived for the case under study 
and the equations describing the propagation of strain waves in a homogeneous anisotropic elastic medium is 
pointed out.
D O I :  10.1134/S1063771010060138

Near-resonance steady-state oscillations have been 
studied in detail for a gas in a pipe with different con
ditions at its ends (see, e.g., [1—6]). Equations 
describing the establishment of periodic gas oscilla
tions were obtained in [4]. Transverse oscillations in a 
layer of an isotropic medium were studied in [7, 8] for 
the case where the transverse oscillations were per
formed by one stress component and the mean stress 
value was zero. These oscillations are described by the 
equations with cubic nonlinearity, in contrast to the 
quadratic nonlinearity in the case of gas oscillations. 
In [9], planar motions were considered in the case of 
plasma layer oscillations in a magnetic field orthogo
nal to the layer under the particular assumption that 
the velocity of sound coincides with the van Alphen 
velocity. This leads to a complex resonance interaction 
of transverse Alphen perturbations and longitudinal 
acoustic waves.

In the case of small nonlinear oscillations in a layer 
of a weakly anisotropic elastic medium, which are 
considered below, two types of shear waves propagate 
in each of the directions with velocities differing by the 
quantity that depends on both nonlinearity and 
anisotropy. Thus, close-to-resonance conditions 
simultaneously occur for both types of waves. The 
presence of anisotropy in the medium means that one 
should study oscillations at which the medium per
forms arbitrary motions in planes orthogonal to the 
direction of wave propagation. It is assumed that no 
resonances occur between the longitudinal and trans
verse perturbations. In this case, longitudinal pertur

bations should not noticeably develop and their varia
tions can be neglected.

I N I T I A L  E Q U A T I O N S

We consider a layer of a homogeneous elastic 
medium with a width L ; the layer lies between two par
allel planes orthogonal to a certain direction, which is 
denoted as the x3 =  x  axis of the Cartesian Lagrangian 
system of the initial state. The x 1 and x2 axes lie in the 
plane that is parallel to the boundaries. We consider 
one-dimensional shear plane waves propagating in the 
x  direction. The wave amplitude is assumed to be 
small, on the order of s, and the medium is weakly 
anisotropic. According to [11], the variation of the 
longitudinal strain component in these waves is an 
order of magnitude (in s) smaller and, if  necessary, can 
be expressed through the amplitudes of shear waves. 
This allows us, in the statement of the problem, to 
consider the amplitude variations of only two shear 
waves.

Equations in terms of Lagrangian variables with 
allowance for nonlinearity and anisotropy in the prin
cipal terms have the form [ 1 0 , 1 1 ]

— ' = 1  ( Щ ^  = ' U ,  i = 1 , 2 , ( 1 )
d t dx  vd u i  d t dx
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« 2 24 e ,  2 2ч к ,  2 2ч2
Ф = 2  ( u 1 + u2) + 2) ( U 2 -  u 1) -  4  ( u 1 + u2)

v i
Sw; _ 5W(-
5 t ’ i dx

(2 )

Here, w(- is the displacement of the particles of the 
medium, ui characterizes the shear strain of the planes 
parallel to the wave front, and v t are the velocity com
ponents of the particles of the medium. The medium 
is assumed to be homogeneous, and its density is p0 = 
const; hence, in Eqs. (1) and in the subsequent calcu
lations, for simplicity we set p0 =  1. The function Ф is 
the elastic potential of a unit mass; f ,  g, and к are the 
elastic coefficients of the medium. The coefficient f  
involved in the first term little differs from the shear 
modulus p and is proportional to the squared velocity of
small perturbations in the linear isotropic medium c0, 
so that, taking into account that we have set p0 =  1 , we
obtain c2 =  f  The last term in expression (2) for the 
elastic potential represents the nonlinear properties of 
the medium; the coefficient к is finite and may have 
any sign. The factor g  of the anisotropic term is 
assumed to be small and positive. For the nonlinear 
and anisotropic effects to be of the same order of mag
nitude, it is necessary that the coefficient g  is on the 
order of s2. This condition is assumed to be satisfied in 
the subsequent consideration.

For Eqs. (1), we set the following boundary condi
tions: v(- =  0 at x  =  0 and v t =  y ;(t) at x  =  L ,  where the 
functions y ;(t) are periodic or close to periodic ones 
with a period T  and with amplitudes much smaller (at 
least two orders of magnitude in s) than the amplitudes 
of the strain oscillations under study. We wifi study the 
behavior of the functions ux(0 , t) and u2(0 , t) repre
senting the shear strains at the fixed boundary x  =  0 . 
The shear stresses at this boundary are expressed 
through the strains: ст;- =  5Ф(их, u2)/Su(-.

It should be noted that, for small-amplitude waves 
propagating along a homogeneous background in a 
single direction (in the positive or negative direction of 
the x  axis), the system of four equations can be approx
imately (but without loss of accuracy) transformed to 
a system of two equations with the potential Фь which 
has the same structure as potential (2 ) with somewhat 
different coefficients f  ̂  f ,  g  ^  gb and к ^  кр

d u  + д  ( дфМ = 0
d t dx  v du i 2

i = 1 , 2 ,

h  = f  g 1 = g /(  2 j f ) , K 1 = к / ( 2 j f ) .

(3)

The upper sign in Eqs. (3) corresponds to the motion 
of perturbations in the positive direction of the x  axis, 
and the lower sign corresponds to the motion in the 
negative direction.

We make an assumption concerning the order of 
magnitude of some of the quantities involved in the

statement of the problem. Since the amplitude of the 
emitted perturbations is taken to be ui ~ s <§ 1 , these 
perturbations in the rough approximation can be 
described by the solutions to linearized equations ( 1 ).

In the approximation linear in s, in the layer of the 
isotropic elastic medium between the fixed planes x  =  0 
and x  =  L ,  periodic natural oscillations may occur that 
are related to the propagation of linear perturbations 
along the x  axis in both directions with the velocity c0

=  J f  and period T0 =  2L/c0. The effects of anisotropy 
and nonlinearity manifest themselves in that the 
velocities of the characteristics o f two shear waves dif
fer from c0 by the quantities on the order of s2. Corre
spondingly, the travel times of these characteristics on 
the segment [0, L ]  in both directions differ from T0 by 
a quantity on the order of s2, while the external actions 
y ;(t) are also small compared to s.

We assume that the period of external actions T  is 
constant and close to the period ofnatural oscillations T0, 
so that T  — T0 ~ s2 and, hence, the mode of oscillation 
is close to the resonance one. In this case, it is useful to 
introduce the quantity a =  2 L / T  =  const with the 
velocity dimension. The quantity a slightly differs 
from the velocity of linear natural oscillations c0, and 
this difference is a — c0 ~ s2. Below, it will be shown 
that, if  y ;- is on the order of s3, the effect of external 
actions can compensate the effect of the nonlinear 
terms and, hence, steady-state periodic oscillations of 
the medium are possible.

Under the above assumptions, taking into account 
only the terms on the order of s, the solution within 
one period can be constructed as a sum of linear waves 
propagating with the velocity a and reflected from the 
fixed boundaries. The corrections due to the nonlinear 
terms and the terms representing the anisotropy, as 
well as the corrections due to the boundary conditions, 
are taken into account in the next approximation. 
They lead to a slow variation of the waves from one 
period to another. To verify these considerations, we 
transform system of equations ( 1 ) by replacing the 
elastic potential Ф with the function

2 2  
2u 1 + u2F (u 1, u 2) = ф -  a 2 .

Since a2 differs from the coefficient f  involved in 
Eq. (2) by a quantity on the order of s2, all the terms of 
the new function F , including those quadratic in u i, are 
on the order of s4. We write the first group of Eqs. (1) 
so that all the terms on the order of s are on the left- 
hand sides of the equations, while all the terms of
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higher order of smallness (they are on the order of s3) 
are on the right-hand sides:

(4)

d v i 2 du i— i -  a — 1 = bi, 
d t dx

t  = д  ( F
i dx  ( d u /

duj -  d_Vi =  0  

t x
i = 1 , 2 .

Still, it would be more convenient to retain both func
tions tyt(at — x) and § t(at + x) for their notations to 
indicate the structure of their arguments. The second 
boundary condition points to the fact that the func
tions and hk are periodic functions of their argu
ments with the period 2L. As functions of t, they have 
the period T.

We reduce the left-hand sides of this system of four 
equations to the characteristic form

d _ I-
dt

<d+I  = b .(I+ IT ) — = — + a —
d t 1 k  k ’ d t d t d x ’

--b( I+, I - ) ,  d-  = d  -  a d , i, k  = 1 , 2 .

d t dt dx

(5)

The new functions I+ =  v i — aui and I -  =  v t + aui are 
the Riemann invariants of the left-hand sides of 
Eqs. (4). The initial variables are expressed through 
them as

T H E  N O N L I N E A R  A P P R O X I M A T I O N
To obtain a nonlinear solution to Eqs. (5), we 

determine the next approximation.
Because of the aforementioned smallness of the 

functions bi( I ±), on the right-hand sides of Eqs. (5), we 
use zeroth approximation (7) as the arguments of bi.

With allowance for the form of dependence (7) of 
the functions фк and 0k on x  and t, in the expressions 
for b;- ^ k, hk), the differentiation with respect to x  can 
be replaced by differentiation with respect to t . Then, 
the functions bt take the form

uk = -T- (I k -  I k ) , v k = -  (I k + I k ) . (6)
2 a 2

Fo r the new functions Ik, the boundary conditions of 
the problem take the form

(I+ + I -  )x = 0 = 0, (I+ + I -  )x = L = 2 Wl( t ) .

T H E  L I N E A R  A P P R O X I M A T I O N

bi = — 2i 8 i -  -KK- -2 [a (9i -  ^i)2 + (фз - 1 -  ^з - 1)2]
2a I 4 a

x ( ддфф + Щ  + ( -1  )3- 1-1К-1 (Ф1 -  » i )(Ф2 -  ^ 2) (9)d t d t 4a

x ( дФз-;- , -̂Э1з ;̂
x | ~ d T  ~ d t

To solve the problem, we use the method of succes
sive approximations. The zeroth approximation is 
taken to be the periodic solution to the linear system 
with the right-hand sides of Eqs. (5) being neglected. 
The solution is represented in the form of waves trav
eling in the positive and negative directions of the x  
axis, in which the corresponding zeroth approxima
tions of the Riemann invariants are retained:

I +0 = ф;(a t -  x ) , I - 0 = (a t + x ) . (7)
Then, for the strain and velocity components, the 
following expressions are valid in the linear approxi
mation:

u0 = — [h ;-(a t + x ) -  ф;-(a t -  x ) ] , 
2 a

v 0 = 1  [h ;(at + x )  + ф;(a t -  x ) ] .
(8 )

Since the external action y ;(t) is assumed to have 
an amplitude much smaller than u ,  for the problem in 
the linear approximation, we should set zero boundary
conditions at both boundaries: v 0 =  0  at x  =  0  and at 
x  =  L .  One of these conditions yields

$k = - Ф^

Here, we used the notations

gi = f - g -  a2, g2 = f  + g -  a2.

Let us calculate the variation of the quantities I j  
within one period T  at the left-hand boundary x  =  0. 
For this purpose, we integrate Eqs. (5) with right-hand 
sides (9) along their characteristics.

Figure 1  shows the (x , t) characteristic plane with 
the boundaries of the elastic layer x  =  0 and L , the 
characteristic x  — at =  const (AD) running to the right 
with increasing time, and the characteristic x  + at =  
const (DB) running to the left. The functions ф;- ^  — x) 
and their derivatives are constant on the characteris
tics running to the right, and the functions h;(at + x) 
and their derivatives are constant on the characteris
tics running to the left.

We consider the variation of I ij  within a period at
the left-hand boundary (x =  0). Taking the state of I ±  

at the point A  at x  =  0 as the initial state and integrating 
Eqs. (5), we determine these functions at the point B  
at the same boundary within the period T  with the 
boundary conditions being satisfied. For this purpose, 
we integrate the equations along the respective charac
teristics. The integration of the first of the equations
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along its characteristic AD  yields the following result at 
the point D (L, t + T/2) at the right-hand boundary:

1+ ( D  ) = 1+(A ) + J  b j d t.
A D

In calculating the integrals of b,, we take into 
account that the functions 0 i(at + x) vary along AD , 
but their values can be considered to be transferred 
without changes along their characteristics (at + x  =  
const) from the segment CD of the right-hand bound
ary; or, which is the same thing, from the segment AB  
of the boundary x  =  0. Thus, when integrating the
equation for 1+ along AD , the functions 0,- should be 
integrated from t to t  + T  along the entire segment A B . 
As a result, we obtain

1+ (L, t + T /  2 ) = 1 + (L, t) + G T ,  

G, = J  b d t .
A D

( 1 0 )

The equations for the quantities G are obtained as a 
result of integration of the right-hand sides of Eqs. (5), 
after which the functions 0 k involved in them are 
replaced by 0 k according to the boundary condition 
of the linear problem 0 k = —фк at the fixed boundary 
x  = 0. We obtain

Gi = - Ц \ S i-  [ 3 (ф,- + ф,)2 + (фз- i + фз- 1)2
4 a I 4 a

+ 3 h, i + h (з -,)(з -,) ( 1 1 )

-  — 4(ф 1 +  ф 1 )(ф2 +  ф2) +  h 12) Щ з - ,  i =  1 , 2 ,

8  a 4  d t

where
T

фi = t | фidt, h ij = фij-  ф iфj ,
0

T
фij = T |фî ,jdt, i,j  = 1 , 2 .

0

( 1 2 )

The integration in Eqs. (12) is performed at x  =  0.
The quantities determined by Eqs. (12) can slowly 

vary from one period to another, because, for every 
step of wave propagation from one boundary to the 
other, the role of the functions ф; is played by their val
ues obtained as a result of the preceding cycle.

In the same way, the integration is performed for 
the second equations (5) for 1- along the characteris
tic DB. Along this characteristic, 0 k(at + x) = const 
and the values of the functions фк are transferred along 
the characteristics x  — at =  const from the segment AB  
of the t axis. The result of this integration yields

1 - ( 0 , T) = I~ (L ,  t + T / 2 ) -  G,T, (13)

since bi dt =  —Gi.Jdb i  i
Taking into account the boundary conditions of the 

nonlinear problem

1 -  ( 0 ) = - 1 + ( 0 ) , 1 -  (L ) = - 1 + (L ) + 2 ф i  ( t),
from Eqs. (14) and (13), we obtain

1- ( t  + T) - 1-(t) = -  2GiT + 2фi( t) , (14)

1+( t + T) - 1+( t) = 2 G T  -  2фi( t). (15)

T H E  E Q U A T I O N S  O F  T H E  S LO W  E V O L U T I O N  
O F  W AVES

As seen from Eqs. (14) and (15), the variations of 
the functions 1 + and 1 -  within the period are small (on
the order of e3). Therefore, oscillations can be described 
on two time scales: within one period (0 < t < T), when 
the quantities rapidly vary with the characteristic time T, 
and small variation of the wave pattern from one 
period to another with a characteristic time of about 
T/e2 or greater. These variations are related to the vari
ation of the “ slow” time 0 < т < да characterizing the 
increase in the number of reflections [13, 14]; i.e., т is 
associated with nT, where n is an integer. The term 
“ slow” is determined by the slowness of the processes 
that occur with varying т.

The variation of the wave pattern within a period 
represents a discrete function determined at times

ACOUSTICAL PHYSICS Vol. 56 No. 6 2010



TRANSM ISSION O F OSCILLATIONS T H R O U G H  A LAYER 897

identical to an integral number of periods T. In the 
proposed approach, the discrete function is 
smoothed out and yields the dependence o f all the 
quantities on the continuously varying variable t ; the 
small (about s2) variations of the functions within the 
period, after being divided by T , can be replaced by the 
derivatives with respect to t . Since, in the real (unique) 
time, the instants (t + T, t ) and (t, t + T) coincide, in 
the proposed approach, the values of all the functions 
at the ends of the segment 0 < t < T  are considered to 
be coincident. Thus, the dependence o f the solution 
on t at a fixed t is determined on a closed curve with 
the length T .

Dividing each of Eqs. (14) and (15) by T , we repre
sent them as a system of partial differential equations, 
where one of the variables is the slow time t and the 
other is the real time t ; these equations describe the
variation of the functions / ,  at the fixed boundary of 
the layer (x =  0). As a result, we obtain

д_ц
дт = - 2  ( о , -

дЛ  = 2  ( G, -  ‘  V ,
дт (  r ‘

Now, we can return to the initial functions u  
involved in the statement o f the problem. Using 
Eqs. (6), we obtain

d ut 
д т

2 ( G, -  V
a (  ' T

(16)

coefficients Ay, we obtain the expressions in the form 
of second partial derivatives of a certain function, so 
that Ay =  d2 Ф /du ,dUj.

The function Ф has the form of a polynomial in 
powers of ui, and the coefficients of this polynomial 
depend on the quantities obtained by averaging the 
solution over t within the period T; i.e., the coefficients 
are functions of the slow time t :

2— -„u, + u 2— 7 M1 T Wt _ <
Ф = f  2 + g

_u2 -  u 1

-  K [(u  + u 1 )2 + (u2 + u2)2]  -  m u 1u2 ,

2 2

(18)

f  =
2

f ~ a
2 a

K ( h n + h 22 ),

g = -g- -  K ( h 22 -  h1 1 ) , 
2 a 2

-  К — к , к = — , m = — h
8 a 4 a 12

(19)

u,
T

2  f u, d t, 
T  J ' hy = u y -  uuy, u

T

2  \u,u,dt.
T  J 1 1

0 0

As a result, system of equations (17) can be reduced to 
the form

In deriving Eq. (16), we took into account that 
<Эу,/<Эт =  0 , because we assumed that the functions v , 
determining the velocity of oscillations at the bound
ary x  =  L  are periodic.

In these equations, we substitute Eqs. (11) for the 
functions G,, which, as seen from Eqs. (11), are on the 
order of s3. Therefore, the error will be smaller than s3 
if, in the expressions for G, the functions will be
replaced by expressions in terms of u0 according to 
Eqs. (8) with allowance for the fact that all the calcu
lations are performed at x  =  0 , where v, =  0 , or are 
approximately replaced by the functions

ф,(at) = - a u ( 0 , t ) .

In addition, to obtain the system of equations in a 
more conventional form, we replace the variable t by 

=  at. The variable £, has the dimension of length and, 
within the period T , varies from 0 to 2L . As a result, 
system of equations (16) takes the form

duu- -  A ( u ) d u  = Ш
дт 1  k )d £, L  ’ (17)

2L  = a T , 1,j ,  k  = 1, 2.
The matrix ||Ay|| of the coefficients of Eqs. (17) 

proves to be symmetric, which points to hyperbolicity 
of the system of equations obtained above. For the

0 u, -  S. ( 5ФЛ = V ©  (2 0 )
д т d ^ ( d u /  L

The left-hand sides of Eqs. (20) are similar in form 
to Eqs. (3) for elastic waves traveling in the negative 
direction of the x  axis over a boundless homogeneous
background [12]. In this case, the function Ф (u , u , ,  
u ,k) plays the role of the elastic potential and its struc
ture is similar to that of elastic potential (2 ) of the ini
tial medium, with the only difference being that the 
coefficients of the new elastic potential depend on т in 
the general case and are constant (as in Eq. (2)) only 
in the case of periodic oscillations. In addition, from 
Eqs. (19), it follows that all the coefficients of expan
sion (18), except for к , are on the order of s2 while the
function itself is Ф ~ s4. It should also be noted that, if 
the initial elastic medium is isotropic and, in expan
sion (2 ), the coefficient is g  =  0 , the new elastic poten
tial Ф acquires an expansion term containing the 
anisotropy coefficient; i.e., the averaged properties of 
oscillations may lead to the appearance of anisotropy.

If  we fix the averaged quantities involved in the 
expression for Ф (they vary slowly), the resulting sys
tem of equations (17) or (20) will be a nonlinear 
hyperbolic system and, therefore, this allows both 
continuous solutions and solutions with discontinui-
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ties. It possesses two families of characteristics of fast 
( c2) and slow ( c 1) waves. The characteristic veloci
ties c 1 and c2 are determined through the function Ф 
by the same formulas by which c 1 and c2 are 
expressed through the function Ф and differ by the 
quantity c2 — c1 ~ s2. In this case, the quantities c1 

and c2 themselves are on the order of s2 and, hence, in 
the course of the evolution of oscillations, may pass 
through zero and change sign, which leads to propaga
tion of small perturbations with varying т in both 
directions in the region of variation of the variable t.

In subsequent calculations, as the second variable 
in Eqs. (17) and (20), we use the variable t (which was 
used initially), rather than the variable £, =  at.

In [14], using the integral conservation laws of the 
nonlinear elasticity theory, we derived a system of inte
gral equations for describing the behavior of the func
tions Uj(0 , t, т):

d_ 
d т

I"u,dt _
J ' Ли .ВЫ:

SO
д U:

"2

=  j  j V A (2 1 )

i = 1 , 2 .

+

Here, t1 and t2 are arbitrary values of time smaller than 
T. This system of equations shows that Eqs. (20) 
express the conservation laws (with allowance for 
external actions given by the functions y,(t)). From 
Eqs. (21), we obtain both differential equations (20) in 
the case of smooth solutions and the relations at dis
continuities

’ SO"
_ди,_

W[ u , ] , i = 1, 2 , (2 2 )

where W  =  — is the “velocity” of the front of discon- 
d т

tinuity and Ф is the function determined by Eq. (18). 
In Eq . (22), it is assumed that the discontinuity occurs 
for u, alone, whereas the averaged quantities ( 1 2 ) are 
continuous.

For discontinuous solutions to exist, the evolution 
conditions should be satisfied at the discontinuity 
front. In the problem of interaction between the front 
and small one-dimensional perturbations, the rela
tions at the discontinuity should be sufficient to make 
it possible to unambiguously determine the perturba
tion of the discontinuity velocity W  and the ampli
tudes of perturbations leaving the front. The evolution 
conditions consist in that the number of characteris
tics leaving the discontinuity should be one less than 
the number of relations at the discontinuity [15]. If  a 
single system of equations describes the solution on 
both sides of the front and the number of relations at 
the discontinuity is identical to the order of the sys
tem, the evolution condition can be formulated as fol-

lows: on the characteristic plane, the characteristics of 
one family converge to the discontinuity, i.e., arrive at 
it on both sides, while the characteristics of other fam
ilies intersect it, i.e., arrive at it on one side and leave it 
on the other side. In the given problem, the relations at 
the discontinuity are represented by two equalities (2 2 ), 
so that, for the evolutionary type of the discontinuity, 
it is necessary that only one characteristic leaves it and 
the other three arrive at it.

Now, let us consider some of the problems that can 
be stated for system of equations (2 0 ).

D E T E R M I N A T I O N  O F  T H E  N E C E S S A R Y  
E X T E R N A L  A C T IO N S

The simplest statement of the problem for the evo
lution model consists in that it is necessary to deter
mine an external action that would maintain a desired 
mode of variation of strain components with increas
ing number of reflections, i.e., that would provide a 
preset form of the functions ui(t , т). Knowing the 
functions ui(t , т), we can calculate the average quanti
ties Ut (т) and Ui2 (т) and then determine the function Ф . 
Substituting this function in system of equations (20), 
we can determine the functions y ;(t, т) of the external 
action that is necessary for maintaining the given 
mode.

From  Eqs. (20), one can see that, in the case in 
which it is necessary to maintain a periodic mode of 
oscillations, the required external action is very small: 
~s3; i.e., it is two orders of magnitude smaller than the 
amplitudes of oscillations themselves. The solution 
under consideration should be stationary in the slow 
time regime; i.e., the period average quantities U, and 
U,j do not depend on т. Therefore, coefficients (19) of
the function Ф are also constant and this function 
only depends on the variables u x and u2. For the exter
nal action components, from Eqs. (17), we obtain the 
expressions

W ,  ( t )
_ L  A  ddU

a ij d t  ’
2 L  

T '

Let us illustrate this by using a specific example. We 
assume that it is necessary to determine the functions 
Wj(t) and y 2(t) to maintain oscillations of the follow
ing type:

u1 = A  sin ю t, u2 = B cos ю t, (23)

where A  and B  are positive constants on the order of s. 
Then,

_ _ _ _ 2
u 1 = u 2 = u 12 = 0 ,  u 11 = A  ,

u 22 = B  , a = L ю /n , m = 0
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and, for the functions v ( t ) , we obtain the expressions P E R I O D I C  O S C I L L A T I O N S  O F  T H E  L A Y E R

V 1 = - —  \g 1 -  к (9A 2 + B 2)
2 a2\- 8 V '

cos Ю t

3Ak k , .2 t>2\ f  a t  3юt
32 a2 1 2 2^

V 2 = ibk_
2 a2

g2 -  к (A 2 + 9 B 2) sin a t

3 В п к  U  d N  f  • a t ■ 3 a t\
------------------------- (A  -  B  )l s i n ----------------s i n --------------I.

3 2  a 2  1  2  2  J

Remember that g1 =  f  + g  — a2 and g2 =  f  — g  — a2 and 
that the coefficient g  characterizes the anisotropy of 
the initial medium and is on the order of s2; hence, 
g1 and g2 are also on the order of s2. The expressions for 
Vi(t) show that these quantities should be on the order 
of s3.

When the initial medium is isotropic (i.e., g  =  0), 
we have g1 =  g2 =  g  =  f  — a2. If, in such a medium, we 
consider the solution with B  =  A , the formulas for y ;- 
take the form

V 1 = - a  cos ю t, v 2 = a sin ю t,
П / -  5k  . 2

a = — 2 A  f g -  T A
2  a 1  4

(24)

Thus, for the strain components ui at the boundary 
x  =  0 to perform circular periodic oscillations with a 
constant amplitude A , it is necessary that the velocity 
vector of the other boundary (x =  L )  has the amplitude 
a  and rotates with the frequency ю. From  the expres
sion for a , one can see that undamped oscillations are 
also possible when a  =  0 , i.e., in the absence of exter
nal action. The amplitude of these oscillations is A  =
A 4g/ 5k  . A t a =  0, we also obtain the trivial solution 

A  =  0. However, if the initial medium possesses a 
minor anisotropy g Ф 0 , undamped oscillations are 
impossible in the absence of external actions (v  =  0 ) 
(this statement is justified below).

When a > 0, i.e., A  < J 4 g/5k  , from Eqs. (23) and 
(24), it follows that the external actions exhibit a phase 
advance of я/ 2  with respect to the oscillations of the
vector m;(0, t); when a < 0 and A  > *]4g/5 к , the exter
nal actions have a phase lag with respect to u ( 0 , t).

I f  we consider the process of the establishment of 
oscillations under study, i.e., if, in Eqs. (23), we set A  = 
A ( t ) and B  = A , then Eqs. (20) acquire the terms 
(5A/5x)u;- on their left-hand side, which will lead to the 
appearance o f the terms (5A/5x)Lu;- in the vector { y j ; 
note that these terms are in phase or in antiphase with 
the vector {u;} (Eq . (23)), depending on the sign of 
(dA/дт).

Let us now present the oscillation velocity compo
nents at one of the boundaries (x =  L )  in the form of 
periodic functions y ;(t) with the period T. We intend 
to determine the stationary periodic solutions for the 
strain components at the other boundary (x =  0). For 
system of equations (2 0 ), we consider periodic solu
tions ui =  u ( t) ,  i.e., solutions for which du/дт  =  0. The 
system of equations takes the form

d f  дФ
d A d  u {

a
L  v <( t), (25)

and it can be integrated over t. Since the functions y ;(t) 
represent the velocity components v t of the boundary 
x  =  L ,  the integrals of them with respect to t have the 
meaning of displacement wt of this boundary and also 
are periodic functions of time. We denote these quan
tities as follows:

L  j V i ( t) dt = b  i( t) .

Evidently, the functions B  (t) can be considered as 
continuous ones.
As a result of integration of Eq . (25), we obtain the sys
tem of equations

f -  = - B (  t ) , i = 1 , 2 . (26)д u i

Because of the stationary behavior, the period aver
age quantities u i  and u j  are constant. Then, the func
tion Ф depends on only two variables, u1 and u2, 
which characterize the strain at the current instant of 
time. In this case, polynomial (18) representing the
function Ф =  Ф (u1, u2) has constant coefficients. 
This means that the equations of system (26) are alge
braic at any instant of time t . The system is a fifth- 
order one, and, therefore, it may have one, three, or 
five real solutions. Each of the solutions represents a 
point on the (u1, u2) plane. We denote these points by 
S a, where a is the number of solution. For illustration, 
we can represent system of equations (26) by means of 
an equation for u1 and an expression for u2 through u1:

к « 1  1  + -------- 2------
4  L (2gffi + B 1 ) 2_

2 B 1( f - g -  a ) щ + — = 0 , 
a

(27)

u2
B 2u 1

2  g u 1 + B 1

The solutions u (t) to system of equations (26) are 
actually functions of B  . The periodic functions B  (t) 
themselves can be represented as the coordinates of a 
point that performs periodic motions along a certain 
curve in the (B 1, B 2) plane (Fig. 2). This may be a 
closed curve or a segment periodically traveled in both
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directions, which can also be considered as a version of 
a closed curve. A t the same time, the points S a describe 
certain curves in the plane (u 1, u2).

The solution to Eqs. (26) may be represented by the 
coordinates ua of any of the points Sa, if this point 
exists for any value of t.

Equations (26) (or (27)) necessarily have at least 
one real solution corresponding to a certain point S b 
if this solution exists for any t, it evidently is continu
ous and periodic. Equations (26) may simultaneously 
have solutions represented by some other points S a in 
the (u1 , u2) plane. In the presence of several points Sa, 
the solutions may have discontinuities, which corre
spond to jumps from one of the points to another in the 
(u1 , u2) plane. In this case, Eqs. (22) will be satisfied, 
because, in the stationary case under study, W  =  0.

The positions and types of the points S a can be 
described by the function N (u b u2):

N (u b u2) = Ф(u b u2) + B 1( t )u 1 + B 2(t)u2,

for which these points are stationary; i.e., they are 
points with zero partial derivatives with respect to the 
arguments of this function. Indeed, Eqs. (26) written 
with the use of the function N (u 1 , u2) take the form

^  = 0 , i = 1 , 2 . (28)
d ui

Note that Eqs. (28) coincide with the equations that 
determine the positions of singular points of the sys
tem of equations used in studying stationary structures 
of shock waves in a medium with the elastic potential
Ф (uj, u2) [11 , 16].

The types of stationary points of Eqs. (28) are 
determined by the signs of the eigenvalues of the 
matrix d2N /d u iduj , which coincides with the matrix of 
the coefficients of Eqs. (17) A ij =  d2N /d u lduj ; i.e., by 
the signs of the characteristic values of the velocities c 1

and c 2 of system (17), which are determined by the 
equations

\A i j -  c5 i j  =  0 .

If  both C1 and C2 are negative, the corresponding
point u“ is the maximum of the function N (u 1, u2); if 
both eigenvalues c 1 and c 2 are positive, this point is 
the minimum; if the signs of c 1 and c 2 are different, 
the stationary point is a saddle point.

As Bj(t) varies along its trajectory, stationary points 
may appear and disappear in the (B 1, B 2) plane 
(Fig. 2). As B f varies, these points always appear and 
disappear in pairs at the instant when the curve that 
represents fifth-degree polynomial (27) touches the 
u1 axis. These pairs are of two types. Some of them 
contain a saddle and a minimum, and other include a 
maximum and a saddle. In the general case (at certain 
values of B,(t)), each of the pairs first (at the instant of 
its generation) appears in the form of a complex sta
tionary point on the (u1, u2) plane and then splits into 
one of the aforementioned pairs of points. As B,(t) var
ies further, these points may disappear also in pairs by 
preliminarily merging into a single point. This pro
cess is illustrated in Fig. 3 for a medium with к > 0 in 
the form of one of the possible sequences of patterns 
of lines corresponding to N (u 1, u2) = const with vary
ing Bi(t).

As it was noted above, along with continuous solu
tions to Eqs. (26), discontinuous solutions, which are 
represented in the (u1, u2) plane by a jump from one 
point S a to another Se, are possible. For a discontinu
ous solution to exist, certain requirements should be 
satisfied, in particular, the discontinuity must be evo
lutionary. In addition, because of periodicity, the solu
tion should return to the initial branch S a within a 
period. However, this is impossible by an inverse jump, 
because, if the jump in some direction of parameter 
variation is evolutionary, the jump in the opposite 
direction is nonevolutionary. Hence, the return to the 
branch S a should occur along the trajectory of the 
continuous solution Se and these two branches of the 
solution should have a common point. Such a point Q 
appears when two stationary points of the pair under 
consideration merge (Fig. 2). The coincidence of two 
points S a and Se in the stationary solution means the 
possibility of the existence of an infinitely weak immo
bile discontinuity; i.e., the zero value of the character
istic velocity. (The particular case of a simultaneous 
mergence of more than two points is not considered in 
this paper.)

For system of two equations (17) with two conser
vation laws, the evolutionary discontinuities (shock 
waves) are the discontinuities with one characteristic 
leaving the front. Among immobile shock waves 
( W  =  0 ), these are fast shock waves corresponding to 
the jumps from the maximum of the function N (u 1, u2)
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(the points S 1 and S5 in Fig. 3) to the saddle (the points 
S2 and S4) and the slow shock waves corresponding to 
the jumps from the saddle to the minimum of the 
function N (u 1, u2) (the points S3). As was mentioned 
above, a periodic solution u 1(t), u2(t) containing the 
jump S a ^  Se is possible if the curve B 1(t), B 2(t) in the 
(B 1, B 2) plane has a point at which S a and Se coincide. 
In Fig. 2, this point is represented by the empty dot Q. 
The point of this curve that corresponds to the jump 
from one branch of the solution to another is repre
sented in Fig. 2 by the full dot P. Both solutions S a and 
Sp should exist for all the values of t in the vicinities of 
these points.

Let, for example, the point (B 1(t), B 2(t)) perform 
oscillations along the segment of a certain curve and 
the point corresponding to the coincidence of S a and 
Sp represent one of the ends of the segment, whose all 
other points correspond to the points S a and Sp. In this 
case, the solution is partially represented by the coor
dinates u 1a) (t), u 2a) (t) of the point S a and, partially, by
the coordinates u 1e) (t), u 2e) (t) of the point Se; at a cer
tain value of t , the solution has a jump from the curve 
described in the plane (u1, u2) by the point S a to the 
curve described by the point Sp. In the stationary solu
tion, the position of the jump is arbitrary. A t the same 
values of the function B  ( t) ,  the jump may be absent 
while the solution can be represented by any of the 
points S a or Sp.

In Fig. 4, the solid lines qualitatively illustrate the 
variation of one of the functions u depending on the 
time t. The curves lying above the dashed line corre
spond to Sa, and the curves lying below the dashed 
line, to Sp. O n  the dashed line, the points S a and Se 
coincide, which, as was mentioned above, means a 
zero value of a certain characteristic velocity. The 
uppermost solid line corresponds to the continuous 
solution Sa. The lowest thick curve corresponds to the

solution with a discontinuity. This solution contains 
the point Q , at which S a coincides with Sp. In Fig. 2, 
this point is also denoted by the letter Q .

Solutions simultaneously containing the fast S a ^  S e 
and slow Sp ^  SY shock waves within one period are 
possible. However, in this case, the curve representing 
the points (B 1(t), B 2(t)) in Fig. 2 should contain the 
points at which, in the (u1, u2) plane, the points Sy and 
Sp and the points Se and S a coincide. The positions of 
the shock waves are arbitrary, as in the previous case.

Let us investigate the possibility of the existence of 
nonlinear undamped oscillations in the absence of 
external actions, i.e., at B  t =  const. (For a specific 
case, this problem was discussed above.) If  stationary 
points are isolated ones, which is the general case, we 
evidently have ut =  const, and oscillations are absent. 
A n  exception is the case where the surface determined 
by the function N (u 1, u2) has a circular symmetry, 
which occurs when, in the formula for N (u 1, u2), the 
coefficient is g  =  0. This means the absence of wave 
anisotropy in the initial elastic medium. In this case, 
the surface representing the function N (u 1, u2) and
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shaped as a volcano crater at к > 0 reaches its maximal 
value at the circumference. All the circumference 
consists of stationary points of the function N (u 1, u2).

To verify that, in this case, oscillations are possible,
i.e., variation of ut without a change in B ,• is possible, 
we first consider the situation wherein small violations 
of the circular symmetry of the function N (u 1, u2) take 
place. In this case, the height of the wall of the “ vol
cano crater” little differs from constant. On the upper 
part of the crater surface near the circumference, four 
stationary points of the function N (u 1, u2) are posi
tioned. Small variations of B t are sufficient for these 
points to begin to move over the upper part of the cra
ter surface, i.e., approximately over the circumfer
ence. In the limit where symmetry violations tend to 
zero, the motion of the point (u 1(t), u2(t)) representing 
the solution is possible over the circumference without 
any changes in B  ,  i.e., without external actions. The 
resulting solution evidently consists of circular waves, 
which are known to be undamped and undeformed in 
the course of propagation.

If the medium has even the slightest anisotropy g ф 0, 
such a solution is impossible.

T H E  P R O C E S S
O F  D I S C O N T I N U I T Y  F O R M A T I O N

Let us discuss the process of discontinuity forma
tion in the problem of layer oscillations under the 
assumption that this process is quasi-stationary. First, 
we consider the situation wherein a stationary solution 
containing an immobile evolutionary discontinuity is 
present. In this case, we have one family of character
istics with a characteristic velocity directed toward the 
point of discontinuity. A t the discontinuity, this veloc
ity exhibits a jump with a change of sign. The other 
characteristic velocity does not change sign at the dis
continuity. The closed line with the length T, within 
which the variable t varies, should contain another 
point at which the velocities of the characteristics of 
this family are zero and the velocity changes sign. E v i
dently, this is the point discussed above, namely, the 
point at which two stationary points of the function N  
coincide. The characteristics of this family move in 
opposite directions from the aforementioned point to 
the discontinuity with the velocity d x/d t  =  c.

Therefore, the quasi-stationary process of discon
tinuity formation can be represented as follows. Ini
tially, at a certain t , both characteristic velocities do 
not change sign as t varies within the period (Fig. 5a). 
In the course of evolution of the solution under the 
effect of external actions, one of the characteristic 
velocities changes sign within one of the segments of 
the t axis. In this case, we obtain two points where this 
characteristic velocity is zero (Fig. 5b).

The signs of the characteristic velocity are always 
such that, at one of the points, the characteristics 
diverge (point B  in Fig. 5b) and, at the other point, 
they converge (point A  in Fig. 5b) in the course of their 
propagation along the t axis. A t the point at which the 
characteristics converge (in Fig. 5, the direction of 
motion of the characteristics is indicated by arrows), a 
discontinuity appears, because the characteristics 
arriving from different sides carry different perturba
tions. The point at which the characteristics diverge 
serves as the source of characteristics arriving at the 
discontinuity from different sides.

The discontinuity formed in the course of the evo
lution of a nonstationary solution can disappear. For 
this to occur, the corresponding characteristic velocity 
should resume the same sign within the whole segment 
of t variation. This may occur if the discontinuity 
approaches the point from which the characteristics 
move away (in the case of the quasi-stationary process, 
this is the empty circle in Fig. 2); here, the magnitude 
of discontinuity becomes zero.
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