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Abstract—The square and triangular lattices are considered, where the uniform crack growth is accompanied
by the wave radiation. The radiation energy and structure are studied. The energy radiated to the bulk of the
lattice is found in a direct way. The radiation structure is described based on the crack problem solution and
by means of the analysis of two-dimensional dispersion relations for the intact lattice. The mode III problem
for square lattice is discussed in detail, whereas, in the case of the plane problem for the triangular lattice, the
only those results are derived which follow from the two-dimensional dispersion relations. It is shown that
there exists a finite crack-speed-dependent region of wavenumbers corresponding to the waves radiated to the
bulk of the lattice. In the case of the triangular-cell lattice, in addition, one or several lattice Rayleigh waves
are radiated. For the square lattice a complete solution for the wave field is presented with the crack-speed-
dependent far-field asymptote. The latter is characterized by the wave amplitude asymptotically decreasing
as the distance from the crack front in power —1/3. The asymptotically significant crack-speed-dependent

direction of the radiation is determined. Such asymptotic results are also valid for the triangular lattice.
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1. INTRODUCTION

The classical continuum model of the material can
be considered only as the slowly-varying approxima-
tion of a discrete or structured material. This accuracy
is sufficient for the analysis of regular processes in
which waves corresponding to the microstructural
scales can be neglected. However, macro-processes
exist, and they are not a rarity in nature, when the
asymptotic approximation of this kind is not suffi-
cient. Fracture is an excellent example of such a pro-
cess. The energy release through the propagating crack
tip imposes no lower limit of the wave length, and the
characteristic size related to the microstructure cannot
be neglected. Under the microstructural influence a
great part of the macrolevel energy release is spent on
the excitation of the microlevel and this phenomenon
cannot be observed within the framework of the
homogeneous model. The discrete lattice model helps
to illuminate the energy release process, accompanied
by the high-frequency wave radiation, and to reveal
the other phenomena accompanying crack propaga-
tion in a structured medium.

Analytical studies of fracture using lattice models
began with the works by Slepyan (1981a, 1981b),
where a massless-bond, discrete, square-cell lattice
was considered. In these papers, steady-state mode I1I
dynamic problem for a semi-infinite crack uniformly
growing in the unbounded lattice was examined. Such
but a triangular-cell lattice was considered in Kulakh-
metova et al. (1984). Main analytical works in this

I The article is published in the original.
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topic are summarized in the book by Slepyan (2002).
Contrary to the elastic continuum the lattice admits
waves with reduced phase speeds, and these waves are
excited by the uniformly growing crack. The radiation
increases much the total fracture energy, and the
determination of the latter as a function of the crack
speed was the main purpose of the analysis. The radi-
ation energy strongly depends on the crack speed and
it does not vanishes as the latter tends to zero. Some
aspects of wave radiation of the propagating crack were
discussed in Slepyan (1981b, 2002), Mishuris et al.
(2009) and Slepyan et al. (2009).

Note that, in the lattice model, similar phenomena
in fracture and phase-transitions are revealed. A
phase-transition wave in a discrete chain consisting of
bistable irreversible elements was first considered by
Slepyan and Troyankina (1984) [also see Slepyan and
Ayzenberg-Stepanenko (2004), Cherkaev et al. (2005),
Slepyan et al. (2005), Vainchtein (2010), and the ref-
erences herein].

In the present paper, the waves radiated by a crack
uniformly propagating in square and triangular lattices
are studied. The mode III problem for square lattice is
considered in detail. The total energy of the radiation
is obtained as the local-to-global energy release ratio.
The energy radiated to the bulk of the lattice is found
by a direct way. In the case of the square lattice, where
no localized wave exists, these two approaches yield
the same result. The radiation structure is studied by
means of the analysis of two-dimensional dispersion
relations for the unbounded lattice and the lattice half-
plane. It is shown, in particular, that there exists a
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finite crack-speed-dependent region of wavenumbers
corresponding to the waves radiated to the bulk of the
lattice. In addition, in the case of the triangular-cell
lattice, one or several lattice Rayleigh waves localized
at the crack faces are radiated. For the square lattice a
complete solution for the wave field is presented with
the far-field asymptote. The asymptotically significant
crack-speed-dependent direction of the radiation is
determined.

2. MODE III FRACTURE
IN A SQUARE-CELL LATTICE

2. 1. Formulation and General Solution in Outline

Consider an infinite lattice consisting of point par-
ticles of mass M. Each particle is connected with four
neighbors by the same linearly elastic bonds each of
length a (Fig. 1). For this lattice mode III crack prop-
agation is studied. A semi-infinite crack is assumed to
propagate to the right with constant speed v; that is,
the time-interval between the breakage of neighboring
bonds on the crack path, a/v, is constant. In this
“steady-state” process, a part of the energy, delivered
by a feeding wave from a remote source, is spent on the
bond disintegration on the crack path and the rest is
radiated away from the crack front. The dynamic
equation of the lattice for the anti-plane strain is a dis-
crete analogue of the two-dimensional wave equation

dzum A1
MTU = Wty (D) 4ty (1)

+ um,n+1(t) + um,n—l(t) _4um,n(t)]s

where u,, ,(f) are displacements, m and n are discrete
coordinates of the particles, Fig. 1, and p is the bond
stiffness.

Via a long-wave approximation, the lattice corre-
sponds to a homogeneous body of density M/a* and
shear modulus p (the lattice is assumed to be of a unit
thickness). Accordingly, the shear wave velocity is

givenby c=c, = 4 azp /M . A subcritical crack speed is
assumed: 0 < v < ¢,. In the following, i, M and a are
assumed to be the natural units; in these terms, ¢, = 1.

ey

For the considered steady-state problem a moving
coordinate, 1 = m — vt is introduced. Assuming
u, () = u,(n) equation (1) can be rewritten in the
form

2d’u,(n) _ ~
Vd—r|2 =u,(M+1)+u,m-1) ?)

+ un+l(n) + un—l(n)_4un(n)'

The Fourier transform on 1 for n > 0 leads to a gen-
eral solution of the form

u,(k) = u' (k)L (k), 3)
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Fig. 1. The square-cell lattice.

with

(k) —hk) gy <1y
r(k) + h(k) " (4)

W (k) = 2(1 - cosk) + (0 +ikv)’, F(k) = h’+4,

where, in accordance with the causality principle for |
steady-state solutions (see Slepyan (2002)), it is writ-

ten 0 + ikv= lim (s +ikv) instead of ikv.
s —+0

u(m) = uy(n), Ak) =

The antisymmetric problem is considered, u_,(1) =
—u,_,n=1,2, .. Interms of the Fourier transform,
Eq. (2) yields

r(r2 —rh— 2)uF

o h (k) = 0. (&)

This equation is valid for the intact lattice. It is, how-
ever, assumed that there is a crack, where there is no
interaction between the lines of the particles # = 0 and
n = —1 at n < 0. To take this into account the external
forces compensating the interaction must be intro-
duced in (2) for n < 0. In terms of the Fourier trans-
form, equation (5) becomes

k) = 2u_(k), 6
Py (k) u_(k) (6)
where
(0) -
u'(k) = w+u, we = [umedn. (@)
0(—0)

Equation (6) yields the Wiener—Hopf type equation:

L(k) = 10 ()

u, (k) + L(k)u_(k) = 0, 0o
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Fig. 2. Energy release ratios, Gy/G: (I) Mode I (V'=
(IT) Mode II (V' = v/cg); (I1T) Mode III (V' = v/c,).

v/cp);

The Wiener—Hopf technique is based on the fac-
torization, L(k) = L. (k)L_(k), that can be achieved
using the Cauchy-type integral:

L.(k) = exp[ I“—L@dg} +3k>0. (9)

Here L_ (k) is a regular function in the upper half-
plane, and L_(k) is a regular function in the lower half-
plane; L.(ficc) = 1. In this way, it is convenient to nor-
malize the kernel L(k), that is to separate zeros of A(k)
and r(k). For v> v,, v, = 0.315847, such a normaliza-

tion is
L’(k) (10)
_ (0+ik)(0—ik) (O +i(k—h)(O+i(k +h) o .
(1+k)(0+1(k r))0+ilk+r)

where h,, r, are the roots: h(xh,) = r(£r)) = 0 (the
number of roots grows as the speed v decreases). In
this representation, S(k) > 0. It follows that

L.(k) = V[_:I_S'(k)

0+ik)(0+i(k=h))(O0+i(k+hy))
(1+ik)(0+itk—r )0 +i(k+r))

_ A/S(k)exp{ jlnS(a)dg}

L_(k) =

S_(k),
an

Sk = 0.

SLEPYAN

Equation (8) is now represented as

+E]/3+L Ry (k) = AL+ ]

where an analytical representation of the delta func-
tion of k is introduced in the right-hand side. This
reflects a remote constant load; A is an arbitrary con-
stant. The representation corresponds to the mac-
rolevel-associated solution, where the energy is deliv-
ered to the moving crack front by a non-oscillating
wave. Note that the microlevel-associated solutions,
where the energy is delivered by an oscillating feeding
wave, also exist (see Slepyan (2002)). Finally, the solu-
tion is

— ], 12
0+ik O—ik) (12)

A

AL (k)
L_(k)(0 +ik)

u (k) = T (k) = (3

2.2. The Radiation Energy
Let o, be the critical tensile force of the bond. Then

= limsu,(is) = 4 = ==,
§—> 0 2

This relation defines the constant A. Thus the fracture

energy itself as the critical strain energy of the breaking

bonds per unit length is

u(0) (14)

5)

At the same time, the macrolevel energy release rate,
G, is defined by the long-wave approximation of the
solution, which corresponds to the continuous ana-
logue of the lattice; it can be obtained from (13) as an
asymptote, kK — 0. In this way, it is found that (see
Slepyan (1981a), (2002))

Gy = ou(0) = 24",

G=GR ' (v), R(v )—exp{ Imgi(k)dk}
0 (16)
H T ; h
v=1,3,. v 2,4,.

where for v> 0 there is a finite set of the roots, (A, r,):

h(h))=0,r(r,)=0(,,.,2h,andr, ., >r,). Inpartic-
ular, R = h,/r, for v> v,. Note that for a vanishing
speed
R(+0)
y _ 17
= exp| ok 20k | -y, {17
271 2(1 - cosk)
0

The crack speed-dependent energy ratio Gy/G = R(v)
is presented in Fig. 2 for each of three fracture modes,
where modes I and II correspond to the plane problem
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for the triangular lattice (in this case, v is the ratio of
the crack speed to the long Rayleigh wave speed).

The normalized difference
G-G,
G

R(v) = = 1-R(v)

(18)

corresponds to the radiated energy. No surface wave
exists in the square lattice half-plane; hence all this
energy must be radiated to the bulk of the lattice. This
statement is proved below by means of a direct deter-
mination of the energy flux radiated to n — oo.

2.3. Structure of the Radiation

2.3.1. Energy radiated to the bulk of the lattice. The
radiation structure can be disclosed using a direct way
of the energy flux determination. The total energy flux
from the node (m, n) to the node (m, n + 1) is

Gr = Gn—>n+1
“’ . (19)
= [ Lt (1) =t (D)l (1

Note that the result is independent of m. Using the
Parseval identity and taking into account that

Uy (k) = u,(MK) = u' (A" (k) (n20) (20)

equality (19) can be expressed in the form

=- j[un(n)—unﬂ(n)]‘”‘%l(‘”dn
n
= L [0 - ul, (1R, (dk Q1)
271

= —5- [l Gl 1= 01" ERRER .
T

where the pole at k = 0, corresponding to the feeding
wave, must be ignored. Only the segments where A(k)
is complex give a contribution to the integral (21). In
this domain

k) = 1, Ink) = —%r(k)A/—hz(k) (h<0), (22)

and it follows that

G, = o= WGl i ok,
H

(23)

where the domain K is a subset of the positive semi-
axis k > 0, where JA # 0, that is where

“4<h*(k)<0 (h*<0,F>0). (24)
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Fig. 3. The dispersion curves, ® = o, (the lower curve) and
® = o, (the upper curve), and the rays ® = 0.5k and » = 0.2%.
The segments corresponding to the radiation (¥ -segments):
(1)3.791 <k<4.815for v=10.5; (2) 5.1915 < k< 8.2092 and
(3)9.8126 < k< 11.4053 for v=10.2.

The ratio of the radiated energy to the total energy
release rate is

_ 26, _ 269
GG,
(25)
1= LUOP iy =2k
MJL(k) -1 ()5

and the corresponding wave numbers are situated in
the regions where —4 < h? < 0 (24). These regions can
be seen in Fig. 3, where dispersion relations, following
from equations A(k) = 0 and r(k) =

o = o, = £2sink/2,
(26)

o =0, =3I2 1+sin2k/2,

and the rays ® = kv are shown in the first quadrant of
the k, o-plane. Note that there exists only a single
J-segment at k > 0 for v > v,. It follows from (25),

(11) and (16) that, in this case

Ik ik _%(;—11—1) = 1-%R. @7

Thus, the energy is completely radiated to the bulk of
the lattice, as it should be.

2.3.2. Two-dimensional dispersion relation and the
radiation. Now consider the two-dimensional disper-
sion relation following from the lattice dynamic equa-
tion (1) for the sinusoidal wave

U, , = expli(or—km—qn)]. (28)
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Itis

® = /4 —2cosk—2cosq, -m<g<T. (29)

In the steady-state problem, the radiated wave fre-
quency and the crack speed are connected by the rela-
tion as

o =kv. (30)

It is important that this relation is valid not only for the
main k-range, —n < k < 7, but for the periodic continu-
ation of the dispersion relation, that is for —oo < k£ < 0.

Fora given values of ® € (0, Jg Yand k =k, € (—m, 1),
the relation is valid for v=w/(k, = 2nv), v=0, £1, ....
If v is given, one or several couples, ®, k, are defined
by the dispersion relation and the steady-state condi-
tion (30). With this in mind, here the ratio w/k is called
the phase speed for any £ € (—, ). Note that the
group velocity and the particle motion are indepen-
dent of the value of integer v in the above relation. It
follows from (29) and (30) that

—4<2(1 - cosk) -k’ <0, (31)

and this coincides with the definition of the J{-seg-
ments (24). The phase velocity as a vector, V, is

M= —2_, v=2K y-_2 @
T 2 2 2
Nk + g k™ +4q kK +q
The group velocity vector, V,, is
|Vg| _ A/sin2k+ sinzq’
® (33)

_ smq

(V) _ smk’ ( g)

For the radiated waves these relations are valid with
o = kv, and if ¢ is defined as a non-negative value

qg = arccos(2—cosk—k2V2/2)20, (34)
then for k in the segments defined in (31)
v = sz’ V=:kaq’

x k2+q2 y k2+q2 35)
v, = Sk (), = <50

in the upper and lower lattice half-planes, respectively.

2.4. The Far Field Asymptote

The wave field in the upper lattice half-plane is
defined by the inverse Fourier transform

u,() = 5= (L () + 1 (]2 exp(=ikn).  (36)

SLEPYAN

It follows from (13) and (4), where for the radiated
waves |\ | = 1, that the field far from the crack front can
be represented as

u,(n) = AU,

_1{l=L(R)
v=1 ] L TS i(QUon + k)] 5

2
Q(k) = 2arctan /_iz = arccos(l + %hz(k)).
r

For the asymptotic analysis of the integral it is impor-
tant that in the range 0.315847 < v < 1, where there is
only a single positive J{-segment, there exists a point
k=k,(v) € { where

(37)

2 3
4O0) _ o, pky = Y90 0 (k= ku(v)).38)
dk dk
This point defines the ray
== -2 ok, @)

where the wave amplitude decreases as n~ /3, while on

the other rays, it decreases as 1/ ,\/;l . The contribution
of this point for # — « can be expressed as

221 - L(ks(v))]
ks(V)L_(ki(v))

exp[-i(Q(ky)n+ kym)]l

=]

1= 1 cos[éP(k*(v))fn + m'}dt
T

: (40)
= [P(ky(v))n/2] " AiryAi(x(v)),
i fo
AiryAi(x) = TCJ.COS( t +xt)
0

where k(v) =
Ny [AiryAi(0) =

The Airy function in a vicinity of n' = 0, is shown in
Fig. 4. The plot of the wavenumber k,(v), corre-

N'[(Pky(v)n/2]7'7 and 0" = n —
323/T(2/3)].

sponding to the main far-field asymptote of the radia-
tion, is presented in Fig. 5. The main asymptote ray
definition, —m/n = dQ/dk (k = k,,) is plotted in Fig. 6.

The functions Q(k,) and P(k,) are shown in Figs. 7
and 8, respectively.

ACOUSTICAL PHYSICS VWl 56 No. 6 2010
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Fig. 4. The envelope of the main asymptote in a vicinity of
the ray n = n,(n): The Airy function, AiryAi(x).
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Fig. 6. The main ray of the radiation, n/n = —dQ/dk
(k = k), as a function of k. (v).

3. TRIANGULAR-CELL LATTICE

3.1. The Lattice

For the triangular lattice, where the plane problem
is considered, the analysis is based only on the disper-
sion relations. In this lattice, each particle of mass M
is connected with six neighbors by the same elastic
bonds, each of the length a and stiffness p. In the long-
wave approximation, the lattice corresponds to a
homogeneous, isotropic, elastic body with density p =

2M/( 3 a?), Poisson’s ratio v = 1/3 and the following
velocities of the longitudinal, shear and Rayleigh

waves: ¢; = A/9/8 ¢, ¢, = A/3/8 cand cg=1/24/3 - 3¢,

ACOUSTICAL PHYSICS Vol. 56 No. 6 2010
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Fig. 5. The asymptote-related wavenumber as a function of
the crack speed.

2.5
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1.0+
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Fig. 7. The function Q(k).

respectively, where ¢ = A/aZH/M . The shear modulus is

2
Ho=pcy; = NG u/4.

In the following, non-dimensional values associ-
ated with the natural units are used: the particle mass
(M = 1), the bond length (a = 1) and the bond stiffness
(n=1). In these terms, c is the speed unit (c = 1), a/c

is the time unit, p = 2/43, ¢ = A9/8,¢c,= A/3/8 and
cr=1/23-3.

Coordinates of the particles are defined by integers
(m, n) or by the vector x which rectangular coordinates
X,y are

x=m+n/2, y= ?n, mon = 0,+1,%2, ....(41)
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Fig. 8. The function P(k).

Crack propagation is a consequence of disintegration
of the bonds between lines n = 0 and n = —1. The lat-
tice and the unit vectors, introduced below, are shown
in Fig. 9.

3.2. Dynamic Equations
Unite vectors I,,i=0, 1, ..., 5, directed from a given
particle to the neighbors are introduced. In terms of
the projections onto x, y-axes, these vectors are

I, = [cos(mi/3), sin(ni/3)], i=0,1,....5. (42)

The dynamic equation for a particle outside the
crack is

2 5
TULX) 50,1301, = 0,
dt o

SLEPYAN

where u(#, x) is the displacement vector and Q(?, x) is
the elongation of the bond associated with vector I;:

0,(t,x) = [u(t,x+ 1) —u(s, x)]I,. (44)

For the considered steady-state problem, the dis-
placements are assumed to depend on n = x — vr and

yforx=m+n/2andy= ﬁ n/2,thatis,u =u(X), X =
m, ﬁ n/2). The equation of motion becomes

Vza'zu—(X) - ZS“Qi(X)Ii =0,

>~ (45)
0,(X) = [u(X+1)-uX)]L.
3.3. Dispersion Relations
For the sinusoidal wave
u(t,x) = exp[i(wf—kx—gy)] (46)

in the unbounded lattice, equation (45) yields a two-
dimensional dispersion relation

((1)2 -3+ 2cos(k) + cos(k/2)cos(ﬁq/2))
X ((;)2 -3+ 3005(k/2)cos(ﬁq/2))
—3sin’(k/2)sin’(J3¢/2) = 0.

(47)

In particular, for g =0and g = 2n/ J3 , four dispersion
relations follow as

o = 0,(k) = +./3-2cos(k)—cos(k/2),

® = 0,(k) = £f6cos(k/4) (q=0),

(48)
® = 05(k) = o,(k+2mn),
(43)
® = o,k) = 0,(k+2m) (q=2m/3).
Fig. 9. The triangular-cell lattice: (a) the lattice and the coordinates; (b) the unit vectors.
ACOUSTICAL PHYSICS Wl. 56 No. 6 2010
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1 1

0 2 4 6 8 10 12k

Fig. 10. The dispersion relations for the triangular-cell lat-
tice: 0 = 0 (1), ® = 0, (2), ® = wg (3), and the rays o =
0.4cpk, ® = 0.5cpk, ® = 0.7cgk, ® = 0.9cgk.

In the lattice half-plane with the x-axis as the
boundary, there exists the lattice Rayleigh wave which
amplitude exponentially decreases with the distance
from the half-plane boundary. The corresponding dis-
persion relation is

Wp = +2c,|sin(k/2)|. 49)
The dispersion curves, ®;(k), .... ®4(k) and wg, in the
first quadrant of the k£, w-plane, are plotted in Figs. 10
and 11.

3.4. Structure of the Radiation

The propagating crack can excite waves which
phase speed along the x-axis coincides with the crack
speed (see Section 2.3.2). In the triangular lattice, the
radiation consists of the lattice Rayleigh wave (see (49)
and Fig. 10) and the waves radiated to the bulk of the
lattice. The crack-speed-dependent k-regions of the

radiation follows from the dependence of cos(ﬁ q/2)
on real k as in the dispersion relation (47) with ® = kv.

The real g range —1 < cos(/3 q/2) < 1 corresponds to
the sinusoidal waves (46). These and only these non-
localized waves can be radiated by the uniformly grow-
ing crack. Equation (47) yields two different functions

for cos( A/g q/2). So the corresponding plots consist of
two branches. The plots for some speeds are presented
in Figs. 12—16. Note that the gaps on the plots serve to
separate the branches. In fact, the gaps do not exist,
and, in each figure, the branches form a closed con-
tour.

For the square lattice the main crack-speed-
dependent direction of the radiation and the field
asymptote are found based on the crack problem solu-
tion. At the same time, the main direction of the radi-
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Fig. 11. The dispersion relations for the triangular-cell lat-
tice: @ = w3 (1), ® = w4 (2), ® = mp (3), and the rays o =
0.4cpk, ® = 0.5cgk, ® = 0.7cgk, ® = 0.9cg/k.

ation, corresponding to the n~'/3-asymptote, can also

be determined based on the two-dimensional disper-
sion relation, without involving the complete solution.
Indeed, from the sinusoidal wave representation (28)
it follows that the exponent A = exp(—ig), whereas the
dispersion relation with ® = kv defines g as a function
of k. In terms of the relation (37), g = Q(k). The fol-
lowing considerations are the same as in Section 2.4.
In this way, it can be shown that such critical points,
k = k,(v), where d’Q(k)/dk* = 0, also exist in the case

of the triangular lattice.

1.0 /\\//\
0.5+

0 5 6 7 3 9 1'0\k
0 / /\
N

Fig. 12. The plot of cos( ﬁ q/2) as afunction of k based on
(47) with ® = 0.4cgk. The upper curve relates to @, ®,
(Fig. 10), the lower curve relates to o3, w4 (Fig. 11). The
radiation wavenumbers correspond to real g, where —1 <
cos(ﬁ q/2) < 1. The intersections of the curves with the

lines *1 correspond to the intersections of the ray o =
04.cgk with the dispersion curves in Figs. 10, 11. The

regions outside the +1-strip correspond to complex q.
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Fig. 13. Same as in Fig. 12, but for o = 0.5¢gk.
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Fig. 15. Same as in Fig. 12, but for ® = 0.9¢zk.

4. SOME CONCLUDING REMARKS

This article discusses the energy and structure of
the waves radiated by a growing crack to the bulk of a
lattice. The radiated energy is determined directly (23)
(as it was done earlier for another situation in the arti-
cle by Mishuris et al. (2009)). It is interesting that the
same result was obtained by a completely different
way, by comparing the exact solution for the crack
line with its long-wave asymptote (Slepyan (1981a),
see Section 2.2).

In the mode III fracture of the square lattice, the
radiation is directed to the bulk of the lattice. In the
plane problem for the triangular lattice, in addition,
the lattice Rayleigh wave is excited. There exists the
main crack-speed-dependent ray of the radiation,
where the wave amplitude decreases most slowly.
The asymptote is proportional to n~'/3, and in a
vicinity of this ray, the envelope is described by the
Airy function.

A complete description of the wave structure can
be extracted, in principle, from the crack problem
solution, as it is done here for the square lattice.

SLEPYAN

Fig. 14. Same as in Fig. 12, but for ® = 0.7cgk.
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Fig. 16. Same as in Fig. 12, but for o = czk.

However, some important data concerning the wave
radiation follow directly from the two-dimensional
dispersion relations with the steady-state condition,
o = kv (see Section 3.4). First, the radiation wave-
number segment, the K -segment, can be obtained,
as it is done here for the triangular lattice. Next, it is
the expression for the exponent, A(k) = exp(—iq),
where quantity ¢ is defined by those relations as a
function of k (here k = k,, ¢ = k,). Thus the main
crack-speed-dependent direction of the radiation
and the normalized n~'3-asymptote are in hand
(see (4), (28), (34) and (37)). Note that these lattice-
associated phenomena cannot be observed in the
classical elastic continuum, where the phase speed
of a wave along a line cannot be low enough, v > ¢y,
and the crack uniformly growing with a subcritical
speed does not radiate.

Finally note that the phenomena discussed in this
paper are not confined to the crack problem. These
phenomena are typical for the lattice under the action
of a uniformly moving load.
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