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Abstract—The propagation of elastic waves in periodic stratified media with arbitrary local anisotropy and in
anisotropic plates and bars inhomogeneous in thickness is considered under the condition that the ratio of the
scale characterizing the inhomogeneity of the medium or the thickness of a plate or bar in thickness to the
typical wavelength is small. The propagation of long waves is described using the effective averaged equations
with high-order accuracy, which are derived by the method of two-scale asymptotic expansions in €. The
results of analytic and numerical studies of their principal terms responsible for the dispersion of waves are
presented. The form of the dependence of the wave velocity on the wavelength is studied for structures with

different types of symmetry.
DOI: 10.1134/81063771010060230

INTRODUCTION

The processes that occur in inhomogeneous media
when the scale of inhomogeneity is much smaller than
the global scale of the problem are studied using mod-
els that appear as a result of a certain averaging. For a
medium with a periodic structure, one of the methods
of obtaining effective averaged equations that require
no preliminary hypotheses concerning possible types
of the local stress—strained state is the method of two-
scale asymptotic expansions, which was developed in
the mathematical theory of averaging [1, 2]. This algo-
rithm allows one not only to construct the equations
for the period average quantities, but also to determine
the local fields to a certain approximation. It should be
noted that the global properties of a microinhomoge-
neous medium may qualitatively differ from the prop-
erties of its constituents [3].

The present paper is devoted to derivation and
investigation of equations describing the propagation
of elastic waves in periodically stratified—in particu-
lar, layered—media and also in plates and bars inho-
mogeneous in thickness under the condition that the
ratio & of the scale of inhomogeneity occurring in a
medium or a plate or bar to the typical wavelength is
small: £ < 1.

The theory of fine-layered media is important for
acoustics and seismology. It has been studied by many
authors [4—9]. The main purpose of these studies was
to determine the effective elastic properties of such
media. Publications devoted to models with dispersion
[10, 11] only considered media that consisted of a
repeated set of two homogeneous isotropic layers. The
present paper studies stratified (not necessarily lay-

ered) media with an arbitrary local anisotropy. The
main purpose of this paper is derivation and investiga-
tion of equations with dispersion. The equations are
derived using the method of two-scale asymptotic
expansions.

If, in the method of two-scale asymptotic expan-
sions, the derivation of the equations is restricted to a
zero approximation in g, then, for linearly elastic
media, after averaging, one obtains the equations cor-
responding to ordinary (anisotropic in the general
case) elastic media with some effective elastic moduli.
To describe the dispersion of waves, it is necessary to
take into account the terms of higher orders in €. In
this case, the equations contain higher-order deriva-
tives of displacements with respect to coordinates and
time [1]. Another effect that requires equations with
higher accuracy in ¢ is the so-called scale effect: the
effective properties of a medium depend on the size of
the inhomogeneities even when this size is much
smaller than the size of the body. Equations with high
accuracy in ¢ are necessary for describing the pro-
cesses in narrow zones, €.g., the structure of a shock
wave [12].

The models of compressible liquids, the equations
of which contain higher-order derivatives of various
parameters of the medium with respect to time and
coordinates, were introduced phenomenologically, in
particular, in [13, 14]. Equations with higher-order
derivatives are also used in the models of the Cosserat
theory of elasticity [15, 16]. As a rule, these equations
are postulated on the basis of phenomenological
hypotheses. The method of two-scale asymptotic
expansions allows one to derive the expressions for the
coefficients of these equations in explicit form when
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the microstructure of the medium is known. After
some modification, the method of two-scale asymp-
totic expansions can be used to derive the averaged
equations of plates and bars if the wavelengths of the
waves under study are much greater than the typical
thickness of the plate or bar.

The present paper briefly describes the method
used to derive the averaged equations and presents the
results of analytic and numerical studies of their prin-
cipal terms, which determine the dispersion of waves
in various inhomogeneous media and structures. The
main part of the paper is a brief review of the results
obtained together with N.S. Bakhvalov that have been
reported in a number of recent publications [17—23].
The numerical study of the properties of the derived
equations was carried out with participation of
K.Yu. Bogachev and A.E. Yakubenko.

METHOD OF TWO-SCALE ASYMPTOTIC
EXPANSIONS FOR DERIVATION
OF AVERAGED EQUATIONS
OF MICROINHOMOGENEOUS
ELASTIC MEDIA

Let us write the equations of the linear theory of
elasticity in the form

2
pa_u + Q(AU@) =
or  Ox;\ Tox;
are the

Here, u is the displacement vector and 4;

matrices of elastic coefficients. It is assumed that they,
as well as the density p, are periodic functions of coor-
dinates with a period d. We consider the waves the typ-
ical wavelength / of which is much greater than d, so

Lu = —

that ¢ = 6—[1 < 1. Let us introduce slow x; and fast y;

dimensionless variables according to the formulas

=7
x]—[’

o I3

Y, =

k!

where X; are the dimensional coordinates. For the

media under consideration, we have
p = p(yj)7 A, = Aij(yj)'
The displacement vector is assumed to be a func-
tion of both fast and slow variables, u = u(¢, x X5 Vjs £),
and is representable in the form of an asymptotic series

expansion in powers of €. In [1], this series was shown
to have the form

w~ve SN, ) — 2 (1)

ho bl
! o' ox, 0x;50x;
wherem=q+ 1+ 1, + 1 qu1 1,1, are periodic functions

of fast variables, these functions being determined by
the structure of the medium; and v = v(x;, x,, X3, #) is
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independent of the fast variables. The substitution of
series (1) in the initial equation yields
- m—2 6mV
Lu~ Z " "H!
m=0

—_—, (2
6tq6x 6x 6x

1112130’1, Y2, ¥3)

where

a aqu 2°3 -
qulzzz3 = —(A,-j ”lj - Pqulzzzz3
oy, 6)’,‘

ON;

+Al] 1761'15 12761'2513761'3
0y;
3)

6(1‘1 qu Bl 815 5]3)

0y;

+A;N] 5

=8;1-8;1, 1= 8,85, 13— 8,3 ;3°
and §; are the Kronecker deltas. It is possible to deter-

mine qu1 1,1, SO that, in Eq. (2), the coefficients multi-

plying the negative powers of € are zero while the coef-
ficients multiplying its nonnegative powers are identi-
cal to certain constants:

qu11213(J’1,y2,J’3) =0 for m=qg+L+5L+5<2, @

qu11213(y1,J/2, y3) = hz% = const for m=>2.

Here,

<H1q1121>

zlz 1, =

The angular brackets {.) denote the period average

values. The following condition is usually set is usually
set as an additional condition necessary for unique

determination of qu1 L, -

<N1q11213> = 0.

Then, v~ {(u).

The averaged equation of an infinite order of accu-
racy in € has the form

m—2
LVN ZS hl 1213

m>2

o"v
Lo Lo 1
o1 0x, 0x,0x;

m = q+[1+[2+[3

~0,

Equations (4) are the equations for determining qu1 L, -
From the structure of formulas (3), it follows that, for
determining qu1 1,1, » 1t 1S necessary to solve static prob-

lems of the theory of elasticity within the periodicity
cell with some special body forces and boundary con-
ditions. In the case of a complicated cell structure,
these problems can only be solved numerically. It is
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important that these problems do not depend on the
global initial and boundary conditions. For a given
structure, they should be solved once, after which the
coefficients of the averaged equations are calculated.
Then, it is possible to solve specific problems on the
behavior of the medium under any given conditions.

Let us list some of the properties of the averaged
equations for arbitrary elastic periodic media [24].

(1) The averaged equations contain no odd deriva-
tives with respect to time.

(ii) The matrices of the coefficients multiplying the
even derivatives with respect to coordinates are sym-
metric, whereas the matrices of the coefficients multi-
plying the odd derivatives are antisymmetric:

(hglzzg) = (-1

(iii) It is possible to obtain different asymptotically
equivalent forms of higher-order equations by using
the equations of lower approximation. In particular, it
is possible to eliminate the time derivatives of orders
higher than second. In this case, it is possible either to
retain the mixed derivatives with respect to ¢ and x;
(equations in the form A) or to obtain equations con-
taining no mixed derivatives with respect to 7 and x;
(the form B).

h+5+%
lllzls'

WAVES IN STRATIFIED MEDIA AND PLATES

Let us consider a stratified medium [17—20] for
which

= p(y), A4y = A4,),

The equations for the waves propagating in the direc-
tion perpendicular to the layers are as follows: u = u(z,
Xy, ¥), v=v(t, x;). Let us use the notation

y = x/e.

- q -
x; =x, higg=hi, Ay =4,

A 11
= (p), A=(4)
Then, we have
Lv~_pa—v+215V Z gt g
or 6tq6x

g+1=3

Itcanbeshown [1, 18] that h?, = 0forn>2. Therefore,

rejecting the terms the order in & of which is higher
than second, we obtain

Lv——f)@+;1@ en? 0
or  ox or'ox
(5)
(hg‘@j % 6v) = 0,
ot orox’
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In addition, we write the equation in the form A:

v _p@_hzlﬁv_'_ hf v
or ox’ o' ox
(6)
AT e B
o' ox’

For the type of layered medium under study, in [ 18] we
determined the functions qul L7, I explicit form and

the formulas for the coefficients multiplying the higher
derivatives in Egs. (5) and (6), which contained the
integrals of certain functions of p and A over the
period. Analysis of these formulas suggests the follow-
ing conclusions.

(i) When A is a scalar (e.g., waves in a layered liq-

uid), we have hg >0, the case hg = 0 taking place ifand
only if the initial density is independent of coordinate.

.. . . . 2
(i1) When A(y) is a diagonal matrix, we have h; = 0.

In addition, h% = 0 if and only if p4 = const. Hence,
when pA = const, the averaged (accurate to O(g*))
equation does not contain higher derivatives. There-
fore, the dispersion of waves is absent. It can be shown
[18] that, at pA4 = const, the dispersion is absent for
any approximation in €. This agrees with the fact that,
as is known from acoustics of liquids, at p4 = const, no
refraction of waves occurs at the layer boundaries.

(iii) When A(y) is not necessarily diagonal but h% =

0, the averaged equation (6) has the form
LYy = - ;3@ + ;1@;
or ox

zhg o'v
o1’ ox’

=0. (7)

If the condition h% = ( is satisfied, it can be shown that
hs >0.

When h% =0 (and, therefore, iz% > 0), forlong har-
monic waves that propagate in the layered medium
across the layers and are described by the equation
L4 = 0, the velocity does not increase with frequency.

Indeed, in searching for the solution to Eq. (7) in the

i(kx — wi)

form of a traveling harmonic wave v = ¢ e, we

arrive at the eigenvalue problem,
(P& E—IA+ 20’k hy)e = 0
or (f)czE—;l +p2;l§)e =0,

where p =ewand c= 9 is the phase velocity of waves.

272 . . .
Hence, if h; > 0, we have ¢ = ¢(p); i.e., a dispersion of
waves takes place and ¢(p) decreases with increasing p.
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The condition h% = 0 is not too restrictive. In par-
ticular, it is satisfied in the following cases;

(i) acoustic waves in layered liquids; in this case,
v is a scalar;

(ii)) waves in locally orthotropic layered media
with a symmetry plane parallel to the layers; in par-
ticular, in locally isotropic media (the matrix A4 is
diagonal); and

(iii) waves in media with an arbitrary local anisot-
ropy under the condition that p(y) and A(y) are even
functions of y; in particular, such media are those con-
sisting of the set of two repeated homogeneous layers
with an arbitrary anisotropy of the layers.

Now, let us consider the waves propagating in an
arbitrary direction [19]. Let these be plane waves prop-
agating in the direction 6, 0,, 6;:

3
x = 0x;, 29,2 =

i=1

v = v(1,x),

Then, we reduce the averaged equation accurate to &*
in the form B

m— o"
_<p> Y+ > e g — = 0
yer<d Ox 16x 6x
to the form
—<p>—+Hf’—V+ Y 2m Y Z o )
ox’ ox’ ox’'
where
AN
H(6,, 0, 0;) = Z hzlzzz3e1leze3

L+bL+l =1

Note that, if p = 0, 4; = 0 Vi, j in the interval
a<y <l(where0<a< 1]) and 61 = 0, the averaged
equations describe the wave propagation along an infi-
nite thin plate 0 < x; < ag under the condition that the
plate surfaces are free from any load. The higher-order
equations for plates with allowance for a surface load
were obtained in [21].

It was shown that the coefficients of Eq. (8) have
the following properties.

(i) The matrices H, and H, are symmetric, whereas
H; are antisymmetric V 0,.

(ii) For an unbounded medium, /, > 0 V 0,, and,
for plates, H, > 0.

(iii) A5 =0V 0;in an unbounded medium if p(y,)
and A,(y,) are even with respect to the plane y; =
0.5. Forplates, H;(0, 0,, 0;) = 0 under the condition
of evenness with respect to the median plane. In
particular, the evenness condition is satisfied for
homogeneous plates with arbitrary anisotropy and

for media consisting of a repeated set of two arbi-
trary layers.
3

(iv) The term H; Q; is usually present in the equa-
ox

tions if the evenness condition fails. For example, H; #

0 in the general case of waves propagating along the
layers in three-layer media or in two-layer plates.

Let us consider the solution to Eq. (8) in the form
of harmonic waves

w(t,x) = ¢ e,

We obtain the equality
(=) E+ Hy+ipHy—p'H)e = 0. (9)

Here, c(p) = z is the wave propagation velocity and

p = ek. For all the real values of p, the matrix H, +

ipH; — p*H, is Hermitian and, hence, its eigenvalues
(p) A(p) are real.

Let p,, and e, be the eigenvalues and the corre-
sponding eigenvectors of the matrix H,. For simple
eigenvalues |, the following relations are valid [20]:

(PYen(P) = W +&ub” + 0",
(10)

En = — (H4em’ em) + Z

I#m

(He,, ez)z-
i

m—

The behavior of the wave velocity with varying wave
frequency depends on the sign ofg,, # 0. From Eq. (10)
it follows that the dispersion of waves is equally deter-
mined by the terms with the third and fourth deriva-
tives of the displacements with respect to coordinates.

NUMERICAL STUDY OF AVERAGED
EQUATIONS FOR STRATIFIED MEDIA
AND PLATES

To calculate the coefficients of the averaged equa-
tions for unbounded media and plates consisting of
homogeneous and, in the general case, anisotropic
layers, a program was designed that, for the preset 0,
0,, 05, calculated the matrices H, and then the quanti-
ties 1, and g,,. The following structures were consid-
ered [20]:

(A) isotropic layers;

(B) layers with cubic symmetry;

(C) orthotropic layers; and

(D) layers with arbitrary anisotropy.

In the cases (B) and (C), the directions of the sym-
metry axes were arbitrary. The coefficients of the equa-
tions corresponding to each of the media were chosen
atrandom, and, in each of the cases (A), (B), and (C),
no less than 50000 tests and, in the case (D), no less
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than 100000 tests were performed. Media and plates
with numbers of layers up to 11 were considered.

The calculations showed that the appearance of the
term on the order of € (with nonzero skew-symmetric
matrix ;) is typical of the cases in which the evenness
condition for p(y) and A4,(y) fails. In the equations for
the wave propagation along the layers (6, = 1) in a
three-layer medium, in the general case we have H; = 0.
In particular, H; # 0 for a locally isotropic three-layer
medium if the values of the density p and the Lame
coefficients A are the same for all the layers while the
values of |1 are different.

The system of equations describing the wave prop-
agation in the direction orthogonal to the layers (0, = 1)
in an arbitrary locally isotropic stratified medium falls
into a system of scalar equations. Then, H; = 0. How-
ever, if anisotropic layers are present, in the general
case we have H; # 0. In particular, H; # 0 for a three-
layer medium if its two layers are isotropic while the
third layer consists of a material with cubic symme-
try and none of its symmetry axes coincides with the
X axis.

In the general case of a plate consisting of two
homogeneous layers (when the waves propagate along
the layers), we have H; # 0.

It is of interest to consider the behavior of the
velocities of harmonic waves with varying wave fre-
quency. The calculations for both media and plates
consisting of a periodic set of homogeneous layers
showed that, for different structures, the following
types of velocity variation with increasing frequency
are possible:

(1) all the three velocities decrease;

(ii) two velocities decrease and one increases;
(iii) one velocity decreases and two increase;
(iv) all the three velocities increase; and

(v) one velocity decreases, one increases, and one is
independent of frequency.

For waves propagating orthogonally to the layers, it
was analytically shown [18] that H;(1, 0, 0) = 0 and
H(1, 0, 0) > 0 if the matrix A4;; is diagonal or the
medium is a two-layer one. Then, the velocities of har-
monic waves determined from Eq. (9) do not increase
with increasing frequency. A numerical study of more
than 50 000 variants with numbers of layers up to
11 showed that, for waves propagating orthogonally to
the layers in arbitrary multilayer media, the first of the
listed types (type ) is always realized (a negative dis-
persion).

For waves propagating along the layers, the follow-
ing results were obtained [20].

(i) In multilayer locally isotropic media (structure A),
variants / and 2 were realized, and, in the presence of
anisotropic layers (structures B, C, and D), variants 1,
2, and 3 took place. Thus, in layered media, at least
one of the waves always exhibits a negative dispersion.
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(ii) In one-layer isotropic plates (structure A), vari-
ant 5 was realized, and in anisotropic plates, variant 2
or variant 3 occurred.

(iii) In multilayer locally isotropic plates (struc-
ture A), variant 2 was realized; in the presence of
anisotropic layers, variants 2 and 3 took place; and in
the cases C and D, variant 4 was realized with a statis-
tical frequency of 0.2% (all three waves had a positive
dispersion).

Now, let us consider the characteristic features of
wave propagation in plates. In an isotropic one-layer
plate, oscillations in the directions x;, x,, and x; occur
independently, whereas, in a two-layer plate, oscilla-
tions in the directions across the plate and along the
wave propagation direction are coupled by the terms
on the order of €. In the absence of local isotropy
(structures B, C, and D) in a one-layer plate, oscilla-
tions in the directions x, and x; are coupled in the
principle terms; for a two-layer plate, an additional
coupling on the order of € occurs between oscillations
in all the directions.

WAVES IN BARS

Let us consider the wave propagation in a bar that
is inhomogeneous in thickness and anisotropic. The
typical thickness of the bar is assumed to be much
smaller than the wavelength [22, 23]. Let the x; axis be
directed along the axis of the bar. We introduce the

notation
a= ’—2<1> -
(y3+y3)

The asymptotic expansion of the solution has the form
[25]

u~ > &N )

g,n=0

o1ty
or'ox|
where v = v(7, x;) is a four-dimensional column vector
the elements of which are functions with a character-

istic scale of variation much greater than &; N? (y,, y;)

are 3 x 4 matrices: N? = 0whenn<0org<0, and

100 0
Ny=®=|010-ay,
001 ay,

The four components of the vector v have the mean-
ings of displacement along the bar (longitudinal
waves), displacements in two directions perpendicular
to the bar axis (transverse or flexural waves), and the
rotation angle of the bar cross section (torsional
waves), respectively. The matrix @ determines the
rotation of the bar as a solid body.
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We denote x; by x. The averaged equation with an
infinite order of accuracy in ¢ for a bar the surface of
which is free from loads has the form

_ g+n
v~ Y g7 Y g (11)

oflox"

2<q+n

In this case, N? = 0 and A? = 0 for odd values of g.

This averaged equation differs from the equations
obtained for a layered medium and a plate in that the
solution v has the fourth component, which character-
izes the torsion of the bar. Higher-order equations for
long wave propagation in homogeneous isotropic bars
were proposed by different authors (see the review
[26]). In the present paper, the equations for inhomo-
geneous anisotropic bars are derived and studied.

The derivation of the averaged equation is similar
to the derivation of the equations for stratified media
and plates but with allowance for the additional degree
of freedom of the bar. In the case of discontinuous
coefficients of the initial equation, instead of satisfying

the differential equations for N7 , it is necessary to sat-

isfy the corresponding integral identities. The aver-
aged equations with allowance for a surface load were
derived in [23].

In Eq. (11),
) 0 0 0
P A
0 0 (m (puy)

0 —(pyy {pyy (P(ys+y2))

Now, for the matrix hé , We use the notation ;3 . If the

origin of coordinates is at the center of gravity of the
bar cross section (this is assumed in what follows), the

matrix p is diagonal.

Let us consider the averaged equation accurate to
&3 by representing it in the form B:

2 2
= pD 2y
ot ox
3 4 (12)
v, et m,2Y = g
ox ox

Let us list the properties of averaged equation (12).

(i) The matrices H, and H, are symmetric, and the
matrix H; is antisymmetric.

(ii) The matrix H, has a double zero eigenvalue:
L, = K3 = 0. Its other two eigenvalues, |, and L, are
positive.

(iii) The equalities (H3),; = (H3)3, = 0 are satisfied.

(iv) H; = 0 for a homogeneous isotropic bar; for
inhomogeneous bars, H; # 0.

EGLIT

(v) In the case of a locally isotropic medium, the
element (H,)4, responsible for the velocity of torsional
wave propagation does not depend on the value of the
Lame coefficient A.

When studying the type of dispersion, we consider
the solutions in the form of a traveling harmonic wave
v(t, x) = AR Substituting this expression in the

equation, we obtain
(= (p)p + Hy+ ipH; —p Hye = 0,

c(p) = wo/k, p = ke.

72

Multiplying this equation by ;371 and introducing e’

/

according to the formula e = ;371 ’e’, we arrive at the

eigenvalue problem
(Hy + ipHs—p’Hi)e' = cX(p)e’ (13)
with 0, = p " H,p . Let p, (k = 1, ..., 4) be the

eigenvalues of the matrix H, and e, be the corre-
sponding eigenvectors forming an orthonormal sys-

tem. If y, is a simple eigenvalue of the matrix H;, the

corresponding eigenvalue c,i (p) of problem (13) has
the form

(p) = W+ g + 00",
1

r— My

~ ~ 2
g = — (e, ) + Z (e, €) .

Ik

From properties 2 and 3 of the coefficients of the aver-
aged equation, it follows that, ife, and e; are the eigen-
vectors corresponding to the eigenvalue p, = p; = 0,

we have (Hse,, e,) = 0. Then, for the corresponding

values of ¢?(p), we have cX(p) = W + gp* + O@?),
where the values of g, are calculated from certain more
complicated formulas, as compared to those for sim-
ple eigenvalues.

NUMERICAL STUDY OF AVERAGED
EQUATIONS OF WAVE PROPAGATION
IN BARS

A program was designed, and the properties of the
coefficients of the averaged equation and the fre-
quency dependences of wave velocities were studied

for bars with a rectangular cross section |y,|, |ys| <

1/2; the bars were assumed to be homogeneous in
length and consisting of two or four parts with different
random values of density and elastic coefficients and
with different anisotropies [22]. Different symmetry
variants were considered for the constituent materials
of the bars; the variants were the same as those consid-
ered above for waves in layered media and plates. The
calculations were performed for several tens of differ-
No. 6
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ent variants. The matrices H, and the values of 1, and
g, were calculated.

The results of these calculations showed that, in the
case of waves propagating along the bar, the appear-
ance of the term on the order of & (with the nonzero
skew-symmetric matrix H;) was typical. For all the
structures studied, the values of g, and g; were positive,
g,>0and g;> 0, as in the case of a homogeneous iso-
tropic bar; i.e., flexural waves always exhibited a pos-
itive dispersion. In approximately half of the cases,
g4 < 0, and, in half of the cases, g, > 0; i.e., torsional
waves could exhibit a positive or negative dispersion,
depending on the structure of the bar. It was found that
g, > 0in approximately one out of ten cases; longitudi-
nal waves, as a rule, had a negative dispersion. No
cases with g, > 0 and g, < 0 were observed.

As the simplest example of cases with all g, > 0, a
case was found where the bar consisted of two halves
and the material of the halves had a cubic symmetry;
also, an example may be the case of a bar consisting of
four component bars, three of them being made from
the same isotropic material and the fourth being also
made from an isotropic material but with other values
of elastic moduli.
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