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Abstract— Using the finite element method (FEM), we study the thermoelastic generation and the transmit
ted power spectra (TPS) of Laser-generated lower-order Lamb wave mode in an one-dimensional thin alu
minum plate engraved by a periodic rectangular grating. The calculation verified that the equally good Lamb 
waves band gaps can also exist in an one-component periodic structure and the width and location of the band 
gaps can be regulated by the parameters of the depth of the grooves (h), the ratio of the lattice period to the 
plate thickness (D/ L ) and the ratio of the width of the grooves to the lattice period (d/D). Specially, we suggest 
that Lamb wave band gaps can be substantially enlarged by using multiple periodic systems which consist of 
several pieces of periodic structure with different D/L.
DOI: 10.1134/S1063771011060054

1. IN TRODU CTIO N

The bulk and surface acoustic waves propagation in 
elastic periodic structures have attracted increasing 
attention during the past few years [1—4]. The possi
bilities and promises of using opto-acoustic spectros
copy employing surface acoustic waves (SAW) are 
analyzed more than twenty years ago [5]. The exist
ence of complete phononic band gaps, frequency 
ranges in which acoustic waves are forbidden to prop
agate, suggests many possible applications of 
phononic structures, such as acoustic lens, acoustic 
filters, and efficient waveguides.

The Lamb waves are acoustic waves propagating in 
thin plates with free boundaries [6]. Lamb waves are 
used increasingly for certain non-destructive evalua
tion problems, as they can propagate over long dis
tances in plate-like structures [7]. By the results of 
experimental measurement of the Lamb wave s ampli
tude at the fundamental frequency, the spatial distri
butions of the quadratic and cubic nonlinear acoustic 
parameters can be calculated [8]. Recently, Lamb 
waves in phononic crystal (PC) plates have received 
increasing attention in the community of PC  research 
because the released researches show that Lamb waves 
in two-dimensional PC plates [9—12] and one-dim en
sional PC plates [13—19] also exhibit complete band 
gaps. As a result, many efforts has devoted to the stud
ies o f Lamb wave band gaps in PC plate and their 
applications, such as Lamb-wave filters, Lamb-wave 
resonant cavities for amplification of acoustic energy.

In previous studies on Lamb waves in one-dim en
sional PC plates, researches are mainly focused on the

1 The article is published in the original.

two-component structures. Based on a rigorous theory 
of elastic wave, Chen et al. [13] have employed plane 
wave expansion (PWE) m ethod and transient response 
analysis (TRA) to demonstrate the existence of stop 
bands for lower-order Lamb wave modes in 1D plate. 
Gao et al. [14] have developed a virtual plane wave 
expansion (V-PWE) m ethod to study the substrate 
effect on the band gaps of lower-order Lamb waves 
propagating in thin plate with 1D phononic crystal 
coated on uniform substrate. They also studied the 
quasiperiodic (Fibonacci system) 1D system and find 
out the existence of split in phonon band gap [15]. In 
order to reduce the computational complexity without 
losing the accuracy, Zhu et al. [16] have promoted an 
efficient m ethod named harm ony response analysis 
(HRA) and supercell plane wave expansion (SC PWE) 
to study the behavior of Lamb wave in silicon- 
based 1D composite plates. Zou et al. [17] have 
employed V-PWE m ethod to study the band gaps of 
plate-m ode waves in 1D piezoelectric composite 
plates with substrate. The objects of above studies are 
all two-component structures and three-com ponent 
periodic [18] and quasiperiodic [19] composite thin 
plates are also investigated since it has more and better 
options to achieve the complete gaps.

On the other hand, for the Lamb waves are very 
sensitive to the surface state, an one-com ponent struc
ture with periodic surface can also exhibit band gaps 
for low-order Lamb wave modes. M. Bavencoffe et al. 
[20] have studied the propagation of Lamb wave on an 
aluminium plate engraved by a periodic sinusoidal 
grating and established the relation between the depth 
of the grooves and the width of the forbidden bands. 
Obviously, one-com ponent structure with periodic
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surface can be made easier than two or three-com po
nent PC. Therefore, it has significant importance to 
study in detail the propagation of Lamb waves in one
dimensional thin plate with periodic surface. In this 
paper, the case of an aluminium plate with rectangular 
grating on the top surface is studied. Firstly, the ther
moelastic theory and rigorous elastic wave theory for 
the generation and propagation of Laser-generated 
Lamb waves are presented. Secondly, we study the 
influence of the depth of the grooves (h), the ratio of 
the lattice period to the plate thickness (D/L) and the 
ratio of the width of the grooves to the lattice period 
(d/D) on the width and location of the band gaps by 
calculating the TPS with the FEM . Finally, we suggest 
that Lamb wave band gaps in one-dimensional peri
odic thin plate can be substantially enlarged by using 
multiple structures which consist of several pieces of 
periodic structure with different D/ L .
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2. THEORETICAL M ODEL 

2.1. Theory o f Transient Temperature Field Generation

The analytical material adopt the Al plate engraved 
by a periodic rectangular grating on the top surface, 
which is illuminated by a laser line source in normal 
direction at x  =  0. Because the dimension of the 
grooves and the energy distribution of the laser 
beam  is uniform  in the y axis direction, meanwhile 
the incident waves are assumed to be polarized on the 
x —z  plane, and all deformations are independent of y. 
Thus the problem can be formulated in two dimen
sions on the x—z plane as shown in Fig. 1. We suppose 
that the computed rectangular grating has a period of 
D , in which the groove width is d. The thickness of the 
plate and the depth of the groove are L  and h, respec
tively. The first structure as shown in Fig. 1a has a sin
gle period of D and the second one as shown in Fig. 1b 
is made of two substructures with period D1 and D2, 
respectively. The spatial of the laser beam  is assumed 
to be Gaussian mode in the x-axis so that a two
dimensional Cartesian coordinates is adopted. The 
thermal conduction equation can be described as:

pc dT(x’ z’ -- 
dt

= d _ (^dT(x, z, t f  + d_(k dT(x > z> tK  (1)
dx v x dx '  dz V z dz

Fig. 1. Schematic diagram of the laser irradiating periodic 
plate. (a) Single periodic system. (b) Multiple periodic sys
tem.

and 8T(x, z, t- 
dz z = 0

= 0, (3)

where A(T) is the optical absorptivity of the specimen 
surface, I0 is the incident laser power density, and f (x ) 
and g(t) are the spatial and temporal distributions of 
the laser pulse, respectively. These two functions can 
be written as:

f(x- = exp
(  2 \x-

2
v  af g( t- = t xp ( -  to

(4)

where a0 is the half-width o f the line souse, and t0 is the 
rise time of the laser pulse.

2.2. Theory o f Laser Ultrasound Generation 
by the Thermoelastic Mechanism

When the specimen surface is illuminated with a 
laser pulse with the energy less than the melting 
threshold of the specimen, a transient displacement 
field will be excited due to thermoelastic expansion. In 
an isotropic body, the displacement satisfies

where T(x, z, t) represents the temperature distribu
tion at time t; and p, c, kx and kz are the density, spe
cific heat at constant pressure, and thermal conductive 
coefficients in x-, z-directions, respectively.

(X + 2 p-V (V  • U- -  pV x V x U

■a(зх  + 2 p - v t (x ,z, t- = p d- U ,
dt2

The normal boundary conditions are listed as fol
lows:

k  dlX-x z, t-
z dz z = L

= IoA ( T-f(x-g( t- (2)

where U =  U(x, z, t) is the tim e-dependent displace
ment, X and p are the Lame’ constants, p is the den
sity, and a l is the thermoelastic expansion coefficient 
of the isotropic plate material. The boundary condi
tions at the two parallel surfaces z  =  0 and z  =  L  are
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Properties of aluminum used in the calculation

Absorptivity A(T) = 5.2 x 10-2 + 3 x 10-5 (T -300)

Thermal conductive coefficient K, W m-1 K-1 292.6, T < 200 K
249.45 -  0.085T, 200 K < T < 730 K 

198.47 -  0.014T, 730 K < T < Tm
Density p, kg m-3 -0.22T + 2769, 300 K < T < Tm
Thermal capacity C, J kg-1 K-1 3.791 T, T < 200 K 

780.27 + 0.488T, 200 K < T < Tm
Poisson’s ratio 0.34
Young’s modulus, Pa 7.02 x 1010
Thermal expansion coefficient, K-1 2.31 x 10-5

n • |_ст -  (3X + 2q ) a T(x, z, t ) l \  = 0, (6)

where n is the unit vector normal to the surface, /  is 
the unit tensor, and a  is the stress tensor. In addition to 
the boundary condition, there is also an initial condi
tion

U(x, z, t) = dU (x,z ,t'- = 0, t = 0. (7)
dt

2.3. Numerical Method
The classical thermal conduction equation for 

finite element model can be expressed as:

[ K]{ T} + [ C ]{ T} = {p i } + {p 2 } , (8)
with the heat capacity matrix [C], the conductivity 
matrix [K], the heat flux vector {px} and the heat source

vector {p2}, where {T} is the temperature vector, { T } 
is the temperature rate vector. For wave propagations, 
and ignoring damping, the governing finite element 
equations are:

[M ]{ U} + [S]{ U} = {Fe x t i} , (9)
where [M] is the mass matrix, [S] is the stiffness 
matrix, {U} is the displacement vector, { U} is the sec
ond time derivative of the displacement vector, repre
sents acceleration vector and {Fext} is the external force 
vector. For thermoelasticity, the external force vector
for an plane element is f [B ]T [D]{s0}dS, where {s0} is

JSe

the thermal strains vector, [B]T is the transpose of the 
derivative of the shape functions and [D] is the m ate
rial matrix.

3. N U M ERICA L RESULTS AND DISCUSSIONS 
3.1. Laser and Materials Parameters

Based on the above-described theories, the ther
moelastic generation and propagation of Lamb waves 
are calculated in thin alum inum  plates as shown in 
Fig. 1 with 220 m m  length and 0.5 m m  thickness,

respectively. The line laser pulse with a spatial Gauss
ian distribution and the energy, the pulse rise time and 
the half-width of it are taken to be 13.5 mJ, 10 ns and 
300 qm, respectively. The thermophysical and 
mechanical properties of aluminum in the calculation 
are listed in the table, where Tm is the melting point of 
the material.

3.2. Transmitted Power Spectrum (TPS) 
by Finite Element Method (FEM)

In order to demonstrate the existence of the band 
gaps for the lower-order Lamb wave in the 1D periodic 
structure, the FEM  is employed to calculate the TPS 
for the finite periodic structure. As shown in Fig. 1, 
Lamb wave are excited by a perpendicularly incident 
laser line source at x  =  0 and received at the point 10 
m m  away from the last groove. The generation source 
is 100 m m  from the first groove in order to obtain 
approximate plane waves when the wave fronts reach 
it. For the frequency spectrum of the laser-exited 
acoustic wave is defined by the Fourier transform of 
the spatial distribution of heat source [21], the 
received vertical displacement in time domain can be 
easily Fourier transformed to yield the TPS. The finite 
element models are constructed accordingly. The 
minimum  element size near the affected zone is 
10 qm, whereas the element size outside the heat- 
affected zone is 100 qm  and the time step size is 10 ns. 
The step sizes of temporal and spatial discretizations 
in the FE calculations are fine enough to meet the 
demand of the accuracy of generated ultrasound prop
agation.

Firstly, we study the influence of the ratio of d/D  on 
the band gap. Figures 2a depicts the TPS for the cases 
of L  =  0.5 mm, h =  0.2 mm, D /L  =  2 and d/D  =  0.4,
0.5, 0.6, respectively. For comparison, the TPS for a 
pure aluminium plate of 0.5 m m  thickness is also 
shown (dashed line). Figures 2a shows that there are 
two obvious band gaps in the structure of d/D  =  0.4, 
0.5, and 0.6, the first is an incomplete forbidden gap 
and the second is the lowest complete forbidden gap. 
One can easily find that the initial frequencies of the
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dB

Frequency (MHz)

Fig. 2. The TPS computed by the FEM for the first system 
in Fig. 1; h = 0.2 mm, L/D = 0.5 and (a) d/D = 0.4, 0.5, 
0.6, (b) d/D = 0.7, respectively.

two band gaps are almost constant and the value are 
about 540 and 1110 kHz, respectively, and the ending 
frequency shifts toward the low frequency with the 
width of grooves increase, that is to say that the width 
of band gap decrease with the width of grooves 
increase. When d/D  =  0.7 (Figs. 2b), more interesting 
things happen, the incomplete forbidden gap disap
pears almost completely.

Furthermore, in order to investigate the influence 
of the depth of the grooves on the band gaps, we calcu
late the TPS for the periodic plate with L  =  0.5 mm, 
D /L  =  2, d/D  =  0.5, and h =  0.1 and 0.2 mm, respec
tively. The results are shown in Fig. 3, which tells us 
that the width and the midgap frequency of the forbid
den gaps are related to the depth of the grooves: the 
first complete band gap of h =  0.2 mm  is larger and 
with lower midgap frequency than that of h =  0.1 mm.

Lastly, we show the dependence of TPS on D/L. 
Figure 4 depicts the TPS for the 1D periodic plate with 
L =  0.5 mm, h =  0.2 mm, d/D  =  0.5, and D/L  =  2 and 
2.4, respectively. Two band gaps are clearly seen in the 
periodic system and, for D/L  =  2.4, the first band 
extends from frequency about 360 up to 460 kHz and

dB

Fig. 3. The TPS computed by the FEM for the first system 
in Fig. 1; L/D = 0.5, d/D = 0.5, and h = 0.1 and 0.2 mm, 
respectively.

the second one from about 860 up to 1185 kHz. In the 
case of D/L  =2, the two band gaps extend from about 
540 to 690 kHz and 1110 to 1535 kHz, respectively. 
The results tell us that the band gaps become narrow 
and shift toward the lower frequency with the D/L  
increase.

Figure 5 presents the complete evolution of the 
Lamb wave band structure with the filling fraction 
d/D, the depth of the grooves h and the ratio of the lat
tice period to the plate thickness D/L. Figure 5a 
depicts the structure of the low-frequency gap as a 
function of the d/D. In the calculation, h =  0.2 mm 
and D/L  =  2. As the d/D  increases, the maximum fre
quencies of two forbidden gaps move down m onoto
nously and linearly and the m inimum frequency of the 
incomplete band gap is constant, however, the m ini
mum frequency curve of the lowest complete band gap 
fall firstly and then rise from d/D  =  0.5 with a very

dB

Frequency (MHz)

Fig. 4. The TPS computed by the FEM for the first system 
in Fig. 1; h = 0.2 mm, d/D = 0.5, and D/L = 2 and 2.4, 
respectively.
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Frequency (MHz)

h (mm)

Frequency (MHz)

Fig. 5. The complete evolution of the low-frequency Lamb 
wave band gap with different physical parameters: (a) the 
d/D, (b) the h, and (c) the D/L.

good symmetry. Thus, the width of incomplete forbid
den gap decreases gradually and disappears as d/D  is 
greater than 0.7. Figure 5b displays the depth of the 
grooves dependence of the lowest complete band gap 
width. In the numerical simulation, the L =  0.5 mm, 
D =  1 mm, and d/D  is fixed at 0.5. From the panel, it 
can be seen that the minimum frequencies of the for-

dB

Frequency (MHz)

Fig. 6. The TPS computed by the FEM for the second sys
tem in Fig. 1; h = 0.2 mm, d 1/D 1 = d2/D2 = 0.5, D1/L  = 2,
and D2/L = 2.4, respectively.

bidden gap move down monotonously and linearly 
and the width of the gap increase firstly and then 
decrease with the grooves become deeper. Figure 5c 
presents the complete evolution of the lowest fre
quency band gap with D/L. In the calculation, h =  
0.2 mm  and d/D  =  0.5. In the panel, it can be easily 
seen that the maximum and minimum frequencies of 
the first complete lamb wave band gap and the width of 
it move down monotonously and reaches them  maxi
mum and minimum value when D/L  is 1.6 and 4, 
respectively.

The simulated TPS for the structure of Fig. 1b is 
shown in Fig. 6. For which, L =  0.5 mm, h =  0.2 mm, 
d 1/D 1 = d2/D 2 = 0.5, D1/ l  =  2, and D2/L  =  2.4, 
respectively. The result shows that three band gaps 
exist in the systems and the first gap extends from the 
frequency about 370 up to 460 kHz, the second from 
about 540 up to 675 kHz and the third one is a broad 
region from about 875 up to 1525 kHz. It can be found 
that the frequency range of non-transmission can be 
essentially enlarged as desired by using two substruc
tures with different period to form a multiple system. 
In principle, each substructure has its own band gap 
and the band structure of Lamb waves are strongly 
affected by the ratio of D/L. If the band gaps of the two 
substructures are overlapped in a certain frequency 
range, the forbidden transmission frequency range of 
the multiple periodic system will be from the lowest 
edge of the non-transmission range to the highest 
upper edge of the non-transmission ranges of the con
stituent periodic plates. As a result, the frequency 
range of non-transmission is in some sense enlarged.

4. CONCLUSIONS

The FEM  is applied to the numerical calculation 
for the thermoelastic generation and propagation of 
the lowest order Lamb waves (symmetric mode s0 and
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antisymmetric mode a0) excited by a pulsed laser in a 
periodic thin plate. The received vertical displacement 
in time domain can be Fourier transformed to yield 
the TPS for the finite systems. The results show that 
the forbidden band gaps exist obviously and its struc
ture depends strongly on three parameters, namely, 
d/D , h, and D/L. Thus, we can achieve the needed 
structure of band gaps for Lamb wave by varying the 
critical parameters of the plate. Particularly, the Lamb 
wave band gaps can be essentially enlarged as desired 
by using two substructures with overlapping band gaps 
to form a multiple periodic system, which implies 
some potential applications in the future.
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