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1. INTRO D U CTIO N

Horizontally polarized shear surface waves (SH- 
waves) propagating in multilayered plates resemble 
Love waves [ 1] in polarization, but differ in absence of 
a contacting half-space (substrate), and, hence 
excluding necessity to impose Sommerfeld’s emission 
condition:

u (x, t) = O ( | x ' | ), |x'| ^ д а ,  ( 1)

where u is the displacement field in the substrate; x' = 
v • x is the coordinate along depth of the substrate, and 
v is the unit normal to the plane boundary of the sub
strate.

As will be shown later, absence of condition ( 1) 
results in a different behavior of the SH-waves in lay
ered plates comparing to Love waves. For example, 
there is the existence inequality [2] for a genuine Love 
wave propagating in an isotropic traction-free layer 
contacting with isotropic substrate:

nm)layer < (Cam)substrate, (2)

where cnm denotes speed of the corresponding shear 
bulk wave propagating in n, and polarized in m direc
tion. Violating inequality (2) prevents Love wave to 
exist. At the same time, SH-waves in two-layered 
plates exist at any admissible physical and geometrical 
properties of isotropic layers and at traction-free, 
clamped, or mixed boundary conditions (one outer 
surface is traction free, and the other one is clamped).

1 The article is published in the original.

Concerning energy of the surface acoustic waves, 
the first works [3—7] on derivation o f expressions for 
kinetic and elastic specific energy revealed that in con
trast to bulk waves, for which kinetic and elastic spe
cific energy coincide, in the case of surface acoustic 
waves these energies differ. Other theoretical studies of 
the surface wave energy in elastic and piezoelectric 
media are contained in recent works [8—11]. The anal
ysis presented below shows that the difference between 
these specific energies is associated with the non-uni
form distribution of the magnitude of a surface wave.

The main m ethod used for constructing both ana
lytic and numerical solutions for the considered SH- 
waves, is based on a combination of a complex formal
ism [12] and the modified transfer matrix (MTM) 
m ethod [13, 14]. The latter being rather fast and 
numerically stable allows us to construct analytical 
solutions for plates containing several layers. These 
methods are also applied to analyzing specific energy 
of SH-waves.

2. BASIC NOTATIONS
All the regarded layers o f a plate are assumed 

homogeneous, anisotropic and linearly hyperelastic. 
Equations of m otion for homogeneous anisotropic 
elastic medium can be written in the form:

A(dx, dt)u = divxC • ^ u  -  pu = 0, (3)
where p is the material density, and C is the elasticity 
tensor assumed to be positive definite:

VA (A • • C • • A) = £  A jC iimnAmn > 0. (4)
A e sym(R3 ® R3), A * 0 i j  m n
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Remark 2.1. (a)— The other assumption concerns 
symmetry of the elasticity tensor. It will be assumed 
that all the regarded materials possess planes of elastic 
symmetry coinciding with the sagittal plane m • x =  0, 
where vector m is the polarization vector of the SH- 
wave. This is achieved by the elasticity tensor belong
ing to the monoclinic system, and the latter is equiva
lent to vanishing all of the decomposable components 
of the tensor C having odd number of entries of the 
vector m in the orthogonal basis in R3 generated by the 
vector m and any two orthogonal vectors belonging to 
the sagittal plane.

(b)— It will be shown later that assuming m ono
clinic symmetry provides a sufficient condition for the 
surface tractions acting on any plane v • x =  const to be 
collinear with vector m.

Following [15, 16], we will seek a horizontally 
polarized shear wave in a layer in the form:

u(x) = m/( irx') e Ha' x - ct), (5)
where coordinate x' =  v • x is as defined in; /  is the 
unknown scalar complex-valued function; the expo
nential multiplier ir(n • v — ct) in (5) corresponds to 
propagation of the plane wave front along direction n 
with the phase speed c; r  is the wave number.

Remark 2.2. The displacement field defined by (5) 
is generally complex. In reality, either real or imagi
nary part of the right-hand side of (5) represents phys
ical displacement field that will be implicitly assumed 
in the subsequent analysis. However, retaining com 
plex expressions for the displacement field, will allow 
us to describe situations with the phase shift in a more 
convenient manner.

Substituting representation (5) into Eq. (3) and 
taking into account Remark 2.1. (a) yields the follow
ing differential equation:

((m ® v • • C • • v ® m ) / \

+ 2(m • sym (v • C • n) • m)/'■ (6)

Remark 2.3. For an orthotropic medium and the 
SH-wave propagation in a direction satisfying the 
principle elasticity, Eq. (7) is simplified one:

(m ® v • • C • • v ® m )y

+ (m ® n • • C • • n i
Its solution is follows:

I m -  p c ) = 0.

Y1,2 = ± p c m ® n m
m C • • v m

(8)

(9)

For the considered case, the general solution of 
Eq. (6) can be represented in the form:

/ ( irx ') = C1sin (ryx  ') + C2cos (ryx  '), (10)

v

where у is generally complex root with positive sign 
in (9).

3. EN ERG Y OF SH-WAVES
3.1. Specific Kinetic and Elastic (Potential) Energy

Herein, we derive expressions for specific kinetic 
and elastic (potential) energy of the SH-waves. Taking 
into account representation (5) and assuming |m| =  1, 
the specific kinetic energy can be defined by:

Ekin = 2p u • 5  = 2p®2|m|2/ 2, (11)

where the following relation between the phase speed 
and frequency is used:

ю = rc. ( 12)
Equations (6), (11), and (12) allow us to represent 

the specific kinetic energy in the form:
r, 127.
Ekin = 2 r /

x [(m ® v • • C • • v ® m) /  ' (13)

+ 2(m • sym (v  • C • n) • m )/'

+ (m ® n • • C • • n ® m -  p c2)/ )  = 0. + (m ® n • • C • • n ® m) / ] .

Characteristic equation for the differential 
equation (6), known also as the Christoffel equation, 
has the form:

(m ® v • • C • • v ® m)y2 + 2(m • sym (v  • C • n) • m)y
2 (7)+ (m ® n • • C • • n ® m -  p c )  = 0. 

Left-hand side of Eq. (7) represents a polynomial of 
degree 2 with respect to the Christoffel param eter y. 
Thus, for the monoclinic elastic symmetry only two 
partial waves form the regarded SH-wave in a layer.

The following lemma flows out from solving the 
Cauchy problem for Eq. (6):

Lemma 2.1. A necessary and sufficient condition 
for the real-analytic solution of Eq. (6), to be a non
zero function, is a simultaneous non-vanishing /  and 
its first derivative at some x'.

Another useful expression flows out from (11) and 
( 12):

т 2 F
ю2 = 2Fk--. (14)

p / 12
Now, the specific elastic energy can be defined by:

E elast = 1 Vu • • C • • Vu
t ______ (15)

= 1 r2m ® (/ v  + / n ) • • C • • (/n  + /  v ) ® m.

Remark 3.1. (a)— In view o f Remark 2.2, expres
sions (11) and (15) coincide with the corresponding 
expressions for kinetic and elastic specific energy, 
obtained without using complex displacement fields.
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(b)— Analysis of expressions (2.1), (2.3), (2.6), 
and (2.8) reveals that for the regarded waves E kin Ф 
E elast, due to presence of the generally non-constant 
function f  At the same time, for bulk waves f  =  const, 
and hence from (3) and (5) we arrive at Ekin =  E elast; see 
also [2, 7] for discussions.

Proposition 3.1. (a)— I f  at some fin ite  value o f  the 
phase speed the corresponding frequency ю vanishes, 
then both specific kinetic and elastic energies vanish 
also.

(b) — The specific kinetic energy vanishes at any x ' = 
v • x  = const, on a plane  ю, i f  function f  vanishes at x '.

(c) — The specific elastic energy does not vanish at 
any fin ite  value o f  the phase speed and any non-vanish
ing frequency ю.

Proofs of conditions (a) and (b) are obvious. Proof 
of condition (c) follows from the positive definite con
dition for the elasticity tensor, Lemma 2.1, and 
expressions (2.8), (12), and (15).

3.2. Group Speed

Herein, the vector-valued group speed vgroup is 
defined by [2]:

Vgroup V( rn)ю , (16)
where V(rn) denotes gradient with respect to the inde
pendent spatial variable (rn). For the subsequent anal
ysis the scalar group speed cgroup will also be needed:

cgroup =  |Vgroup| =  >y V /̂-n)®"V (/-n)® ' (17)
Now, combining (13), (14), and (17) yields:

= *J(f  v + fn )(m • C • m)2 • (fn + f ' v) 
cp l f \  '

(18)cgroup

Where, as before, c stands for the phase speed.
Proposition 3.2. (a)— A t any physically admissible 

properties o f  a medium and any SH -wave propagating 
with the fin ite  phase speed c Ф 0, the corresponding group 
speed cgroup is delimited from  zero.

(b)— I f f  ̂  0  at x '  ̂  x'0, where x'0 takes some fin ite  
value, then c ^  ^  0.

Proof (a) flows out from observation that the radi- 
cand in (18) is strictly positive due to (4) and 
Lemma 2.1. Proof (b) is obvious.

Remark 3.2. According to Definition (17) the 
group speed cgroup cannot be negative, since according 
to (17) cgroup is defined as the length of the (possibly 
complex) vector. However, there are other definitions 
for the group speed, that allows negative values for 
cgroup; see [17—19], where the following definition is 
adopted:

cgroup
дю
dr

(19)

A more detailed analysis [7] of expressions (16)—(19) 
reveals that the latter expression yields projection of 
the vector valued velocity (16) onto the wave normal n. 
This provides the explanation of the possible appear
ing negative values of the group speed.

3.3. Ray Speed
The vector-valued ray speed can be defined by (see

[7]):

= elast
E kin + E elast

where J elast is the flux of elastic energy:
J elast = ii • C • • Vu.

The corresponding scalar ray speed is:

_ Jc = vray | rayy
elast ' J elast 

E kin + E elast

(20)

(21)

(22)

Substituting (5) into (22) and exploiting (13), (15), 
yields:

cray

= 2cf|V (f v  + fn ) • (m • C • m)2 • (fn + f v )  (23)
P c2 f 2 + f  v + f n ) • (m • C • m) • (fn + f  v )

Proposition 3.3. (a )— A t any physically admissible 
properties o f  a medium and any SH -wave propagating 
with the fin ite  phase speed c Ф 0, the corresponding ray 
speed cmy is delimited from  zero.

(b) — I f f  0  at x '  ^  x0, where x'0 is fin ite, then

cray  ̂да.
(c) — A  necessary and sufficient condition fo r  cgroup = 

cray, is as follows:

(E kin + E elast) ' (24)
Proofs (a) and (b) are analogous to the proof of 

Pro-position 3.2. Proof (c) follows directly from (18), 
(23), with account of (11), (15).

4. SING LE-LAY ERED ORTHOTROPIC PLATE
Hence it will be assumed that vectors v, m, and n 

coincide with the axes o f elastic symmetry of an ortho
tropic medium.

Remark 4.1. It can be shown (see [13, 14], where 
similar arguments are applied to analysis of Love 
waves) that regardless of boundary conditions and at 
imaginary roots of Eq. (8), no SH-wave can propagate 
in directions of elastic symmetry of an orthotropic sin
gle-layered plate. Thus, the following inequality

c > 'm ® n • - C • - n ® m
P

(25)

naturally arising from (9), delivers a necessary condi
tion for existing surface SH-wave. Thus, for the
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regarded plate all surface SH-waves are necessary 
supersonic, since the radicand in the right-hand side 
of (25) defines speed of the corresponding shear

bulk wave cnm. In this section we assume that condi
tion (25) holds.

4.1. Traction-free Plate
Herein we consider a single-layered plate with the 

traction-free boundary conditions:

f tv( h /  2) = 0
\ , (26) 
1 tv(—h / 2) = 0

the displacement fie ld  and specific kinetic energy vanish. 
That is equivalent to existence o f  the internal immovable 
layers under propagating SH -wave on a traction-free 
plate.

(b)— A t any fin ite  phase speed satisfying 
inequality (25), there are no waves propagating at van
ishing frequency (both phase speed and frequency are 
delimited from  zero).

Proof (a)— follows from considering zeroes of the 
function, defined by (27). Proof (b)— follows from 
analyzing expressions (27), (12). It reveals that no 
non-trivial solutions exist at ю =  0.

where h is the thickness of the plate (we choose origin 
of coordinates at the median plane).

For such a plate, finding function f  from (8), (26), 
yields:

f (  irx ')

f ( ,4 , 2 n ncos(ryx ), at r  = ----- (27)
= , n =  1, 2 ,

sin ( ryx'), at r =
1 yh

where у is defined by (9).
Proposition 4.1. (a)— On planes x '  = const, where

x'=

1 + k
2 --h , at r = 2^ ,  — n < k  < n (28)

2n yh n, k  e Z ,

k  , . (2n -  1 )я ^ „------- h , at r = --------- , —n < k  < n
2n -  1 yh

4.2. Clamped Plate

For a single-layered plate with clamped outer sur
faces, boundary conditions are:

u (h / 2) = 0 

u (- h / 2 ) = 0
(29)

Finding function f  from Eq. (6) and satisfying bound
ary conditions (29), yields:

f (  irx ')

sin ( tyx'), at r 

cos (ryx'), at r

2nn  
Y h
(2n  -  1)n

Yh

n = 1, 2, ...
(30)

Similarly to Proposition 4.1, we have 
Proposition 4.2. (a)— On planes x' =  const, where

x

— h , at r 
2n

2nn
Yh

1 + k
-2— , at r  = <2n - 1) , 

1 2 n -  1 Yh

—n < k  < n

n, k  e Z

—n -  1 < k  < n -  1

(31)

both the displacement field and specific kinetic energy 
vanish. That is equivalent to existence of the internal 
immovable layers under propagating surface SH-wave 
on a clamped plate.

(b)— At any finite phase speed satisfying 
inequality (25), there are no waves propagating at van
ishing frequency (both phase speed and frequency are 
delimited from zero).

4.3. Plate with M ixed Boundary Conditions

Herein we consider a plate with traction-free upper 
and clamped bottom surface:

( tv(h / 2) = 0 . (32)
1 u ( -  h /2 ) = 0

Direct analysis reveals that function f  satisfying hom o
geneous boundary conditions (32) takes the form:

ACOUSTICAL PHYSICS Vol. 60 No. 2 2014
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f (  irx ')

21 n -  1 )я
sin I ryx' -  n I, at r

sin I ryx' + n 1, at r =

yh
n = 1, 2,

21 n + 1 )n

Y h
-, n = 0, 1, ..

(33)

Proposition 4.3. (a )— On planes x '  = const, where

x = (

к  + 1 1 2 {n -  - ) я
h , at r =

21 n -
Yh

к ----- ) 2 | n + - )Я
h , at r =

21 n +
Yh

—n < к  < n

n, к  e Z ,

—n < k  < n

(34)

both the displacement field and specific kinetic energy 
vanish. That is equivalent to existence of immovable 
layers under propagating surface SH-wave on a 
clamped plate.

(b)— At any finite phase speed satisfying 
inequality (25), there are no waves propagating at van
ishing frequency (both phase speed and frequency are 
delimited from zero).

Applying the Modified Transfer Matrix (MTM) 
m ethod [13], functions f k, k  =  1, 2 which define the 
displacement field in the corresponding layeres, can be 
represented in the form:

f k( irx ') = sin (rYk(x' + (-1 f hk/ 2)) > (37)
k  = 1, 2

at the wave num ber r satisfying the following equation:

5. TW O-LAYERED ORTHOTROPIC PLATE 
It is assumed that both layers are (i) orthotropic 

with axes of elastic symmetry coincident with 
vectors n, v, and m; and (ii) the corresponding shear 
bulk waves differ:

(c[m) 1 *  (c L b  (35)

Remark 5.1. If inequality (35) violates, then the 
two-layered plate becomes a single-layered, with 
respect to the SH-wave propagation.

(m ® v • • C1 • • v ® m)Y1 . . , ,
---------------- 1------------ --^sin ( rYi h ,)
(m ® v • • C2 • • v ® m)y2 (38)

x cos (r f 2h 2) + cos (rY1h 1) sin (ry2h 2) = 0 .

Proposition 5.1. (a)— Suppose that

min((cTm) 1; (cnm)2) < c < max((cTm)1 i (cfm)2) . (39)
T

where (cnm)k is the bulk wave speed in the correspond
ing layer, then on planes x' =  const where

\khk| nn S 1 \k
x = ------И  ) „

rYk 2
n e Z, (40)

5.1. Traction-Free Plate and
Boundary conditions for a traction-free plate are:

(a h1/ 2 ) = 0 , (36
11, ( - * 2/2) = 0

where lower indicies are referred to the corresponding 
layers.

- E n t ( r -h )j < n < 0 , if (cnTm)1 < (cnTm)2 

0 < n < E n t , if (cnTm)1 > (cnTm)2

(41)
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and r  satisfies Eq. (38)), both the displacement field 
and the specific kinetic energy vanish in a layer with
the minimal bulk wave speed cnm.

(b)— Suppose that

c > m ax((CnTm)1; (CnTm)2) , (42)
(the phase speed is transonic for both layers), then on 
planes x'  =  const where

x ' = —  -  (-1  f - , n e Z,  (43)
rYk 2

and

- E n { ГГ ^ ] <  n < 0

"  , (44)
0 < n < E n t( ’r - Y f )

the displacement field and the specific kinetic energy 
vanish in both layers.

(c)— At the phase speed c ^  cs — 0, where

cS

'(m ® n • • C 1 • • n ® m) h 1 + (m ® n • • C2 • • n ® m) h 2

Pi- 1 + P2- 2
(45)

there is a lower mode SH-wave propagating with van
ishing wave num ber r ^  0.

Proofs (a) and (b) flow out from expression (37) for 
functions f k. Values for x' defined by (40) and (43), are 
zeroes of these functions.

To prove (c) we need to consider Eq. (38) at small r:

((m ® v • • C i • • v ® m )y 2-i
2 2 (46)

+ ((m ® v • • C2 • • v ® m)y2h2)r + O (r ) = 0.
Equating to zero the coefficient at r  in the left-hand 

side of Eq. (46), we arrive at the solution for the phase 
speed given by (45).

Proposition 5.1.(c) along with expressions (11), 
(12), (15) ensure

Corollary. Both specific kinetic and potential ener
gies vanish at cs.

The typical dispersion curves (in terms of fre
quency and the phase speed c) for a two-layered trac
tion-free plate are presented in figure. At the phase 
speed cs both the (specific) kinetic and potential ener
gies vanish.

Remark 5.2. (a)— Propositions 5.1.(a) and 5.1.(b) 
ensure that planes with vanishing kinetic energy arise 
only if the phase speed becomes transonic for the cor
responding layer.

(b) — Direct analysis reveals that the wave speed cs 
satisfies the inequalities:

m in ((cnTm) 1; (cnTm)2) < c, < m a x ( ( c ^ h  (c ^ b ), (47)
(c) — At speed cs there can be other higher mode 

SH-waves propagating with non-vanishing wave num 
bers; see figure.

(d) — The SH-waves in the vicinity of the limiting 
SH-wave resemble solitones, since the coresponding 
wave number tends to zero as c ^  cs — 0.

5.2. Clamped Plate
Boundary conditions for a clamped plate are:

[u (h / 2) = 0 

[u ( -  h 2/ 2) = 0.
(48)

Application of the Modified Transfer Matrix 
(MTM) m ethod gives functionsf k, k  =  1, 2 in the form:

fk ( irx ') = sin(r jk (x ' + ( - 1) hk/ 2)), (49)
k  = 1, 2.

The wave num ber in representation (49) satisfies the 
following equation:

(m ® v • • C2 • • v ® m)Y1 . ( , ,2 sin ( r v, h ,)
1 1 (50)(m ® v • • C1 • • v ® m )Y1

x cos (ry2h2) + cos (rv1h 1) sin ( ry2h2) = 0 . 
Similarly to the preceding case, we have 
Proposition 5.2. (a)— Suppose that

m in((cnm) 1; (cnm)2) < c < m ax((^m )!; (^m )2), (51)
then on planes x' =  const where

x = nn _ (- i )k h—
rYk 2

n e Z ,

and

- E n t y-Ŷ  < n < 0 , if (cTm)1 < (cnm)2

0 < n < E n t( , if (cnTm) 1 > (cnTm)2

(52)

(53)

and r  satisfies Eq. (38), both the displacement field 
and the specific kinetic energy vanish in a layer with
the minimal bulk wave speed cnm.

(b)— Suppose that

c > m ax((cnTm) 1; (c„Tm)2) , (54)
(the phase speed is transonic for both layers), then on 
planes x' =  const where
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Frequency

(cnm )min (Om ax Phase SPeed

Typical dispersion curves for a two-layered traction-free
t t

plate with (Cnm)min = 1. = 1.59. and (Cnm)max =2

x ' = — -  (-1  )k — , n e Z  and
r jk 2

- E n t ( ГЩ  < n < 0, at k  = 1 (55)
< ,

0 < n < Ent[^rY--1-̂  , at k  = 2

the displacement field and specific kinetic energy van
ish in both layers.

(c)— At the phase speed c ^  cs — 0, where cs satis
fies Eq. (45), there is a lower mode SH-wave propagat
ing with vanishing wave num ber r ^  0.

5.3. Plate with M ixed Boundary Conditions 

Boundary conditions for the considered plate are:

{ « - i/ 2 ) = 0 . (56)
l u ( - h i / 2) = 0

Application of the Modified Transfer Matrix 
(M TM ) m ethod gives functionsf k, k  =  1, 2 in the form:

fk ( irx ') = sin (r jk (x ' + ( - 1) kh k /2 )) , (57)

k  = 1, 2 .
For the considered case, the wave number satisfies the 
following equation:

x (  cos ( ry2h2) — sin ( ry1h 1) sin ( ry2 h2)) = 0. 
Similarly to the preceding cases, we have

Proposition 5.3. (a)— Suppose that

m in ((cnm) 1 i (О 2) < c < m ax((cnm)1 i (О 2), (59)
then on planes x' =  const where x' satisfies Eqs. (52), 
(53), both the displacement field and specific kinetic 
energy vanish in a layer with the minimal bulk wave

speed c[m.
(b) — Suppose that

c > max((cTm) 1; (cTm)2) , (60)
(the phase speed is transonic for both layers), then on 
planes x' =  const where x' satisfies Eqs. (55), the dis
placement field and specific kinetic energy vanish in 
both layers.

(c) — At the phase speed c ^  cs — 0, where cs satis
fies Eq. (45), there is a lower mode SH-wave propagat
ing with vanishing wave number r  ̂  0.

6 . CO N C LU D IN G  REMARKS

Considering specific energy, it was proved that 
kinetic and elastic energy of SH waves generally differ; 
they coincide if only if the displacement distribution is 
uniform at the cross section of a plate.

For SH waves the explicit expressions for the group 
and ray speeds were derived; it was shown that both 
group and ray speeds defined by Eqs. (17) and (22) are 
positive and delimited from zero.

For monoclinic and homogeneous plates and all 
the considered boundary conditions: (i) the admissible 
speed interval is transonic:

c e (  cL  да); (61)
(ii) at any phase speed satisfying (61) there are immov
able longitudinal layers, and (iii) there are no limiting 
SH-waves corresponding to the vanishing frequency.

For the two-layered monoclinic plates and all the 
considered boundary conditions: (i) the admissible 
speed interval is partly transonic

c e ( m i n ( ( c ^ ,  (c L b ) ;да); (62)
(ii) at any phase speed satisfying (62) there are immov
able longitudinal layers, and (iii) there are limiting 
SH-waves at c ^  cs — 0.

Existence of the limiting SH-waves at c ^  cs — 0 for 
a two-layered plate resembles Love waves propagating

with vanishing frequency at speed c ^  (c ^ )  substrate'; 
see [13]. But, in contrast to the limiting SH-waves, 
Love waves at c ^  (cnm)substrate; are of limited interest 
as they becoming leakage in the substrate [13].

It should also be noted that energy considerations 
associated with propagation o f the surface acoustic 
waves not restricted to SH and Love waves, were ana
lyzed in [20—22], see also some other works related to 
the discussed material [23—25].
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