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Abstract— Responses of unconstrained and rigid spheroidal bodies subjected to long sound waves are ana­
lyzed by means of approaching hydrodynamic method. It is shown that in the low-frequency approximation 
the amplitude of translational velocity is completely determined by the density as well as the acoustic added 
mass which is equal to hydrodynamic one associated with the body. The inconformity of responses to sound 
waves in virtue of geometric asymmetry is also presented. In addition, rotational movement engendered by 
acoustic oblique incidence is discussed, and it represents as the modulated angular oscillation similar to the 
beat-frequency vibration. All these analyses on acoustically induced motions provide a theoretical evidence 
for developing spheroidal inertial vector receivers.
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INTRODUCTION

The acoustically forced motions to rigid bodies by 
low-frequency sound waves in an inviscid unbounded 
fluid medium have been serving as the theoretical basis 
of inertial acoustic vector receivers [1, 2]. Absolutely, 
the responses to acoustic waves of common geometric 
bodies, such as spheres and cylinders, have been well 
known when subjected to a sound plane wave. So a 
neutrally buoyant sphere will respond with an ampli­
tude that is the same as for the acoustic wave [3—5]. 
However, as for rigid spheroidal bodies, the researches 
on the acoustical responses are considerably limited 
and more compendious [6], while the fluid flow driven 
motions have been perfectly investigated in the domain 
of hydrodynamics [7, 8]. Some preliminary works have 
been completed by us through numerical simulation 
[9], and this paper, on the basis of sound radiation from 
spheroids [10, 11], is devoted to providing a theoretical 
analysis of prolate and oblate spheroids motions due to 
the low-frequency underwater acoustic field, which is 
extremely significant for designing acoustic vector 
receivers of spheroidal shape.

VIBRATION AND ACOUSTIC RADIATION

coordinate system coincident with the center of vol­
ume, and therefore the velocity potential on S  is

-  = (U + О X r) n on S, (1)
d Уп

where r is the position vector relative to the center of 
volume, and n is the unit normal vector on S directed 
into the fluid. Accordingly the force and moment 
exerted on the solid by the radiated sound wave in the 
fluid are equal to the integrals

j j ф(r x n)dS. (2)
S S

F = P0 7/ff ̂  dS,  т = p0d

Here define ф* to be the velocity potential pro­
duced by the fluid motion when the body translates at 
unit speed in the i direction without rotation, and let
X* be the velocity potential produced when the body 
rotates at unit angular velocity about an axis in the 
i direction through the center of volume without 
translation, and then

дф* дх* , ч— = n,    = (r X n) ,
dyn dyn (3)

ф = иф* + Qx* on S. 
By using the added-mass tensor [8],

Consider a rigid body of surface S  in an unbounded 
ideal fluid medium that translates at velocity U(t) and 
rotates at angular velocity Q(t). Let the origin of the

1 The article is published in the original.

Mj  = —p^j j ntф/dS, Bj  = - P0j j X*(r X n)jdS,
S S

Cj  = —P0j j Ф*( r x n)jdS = - p0 j j ЩxjdS,
(4)

S S
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The force component along x axis can be written as 

fx = P 0 f  $ Фocos(n, x)dS = m{0dU°co$,00. (7)
S

Here the velocity potential ф0 = — U0r represents the 
ideal low-frequency plane wave with the particle 
velocity amplitude of U0, and n is the outer normal to 
the spheroid surface when cos(n,  x) is the associated 
direction cosine. According to the Newton’s second 
law of motion, there is

Fig. 1. Spheroids in Cartesian coordinates.

the components of force and moment of Eq. (2) can be 
expediently expressed as

т  = - f /  U C + a A i) ,

where M y and By denote the fluid added mass and 
added rotary inertia in the case of translational and 
rotational motion respectively, and Cy represents an 
analogous augmentation of mass produced by rotation 
or an increase of rotary inertia produced by transla­
tional motion.

fx + Fx = (ms + Mxx) — -,д t

Fx = Mxx^ c o s  00,
(8)

where Ux is the translational velocity of the spheroid 
along x axis, and Fx and M^ are the reacting force and 
the accompanying added mass from fluid in the case of 
sound radiation of the moving body as derived from 
Eq. (5). Then

Ux = m0 + Mxx = 1 + Kx (9 )
U0cos 00 ms + Mxx Ps/P0 + Kx’

and similarly

LONG WAVE INDUCED 
MOTION TO SPHEROIDS

Ъ = 1+Кг ,
U0sin 00 Ps/P0 + К

(10)

Assume that there is an unconstrained rigid spher­
oid with the mass of ms in the sound plane wave field 
<̂ o(t), and the solid displaced fluid mass is m0. The 
body will consequentially respond to the incident 
waves in terms of acoustic particle velocity or pressure 
gradient [12]. Cartesian coordinate is established to 
make the polar axis of spheroid coincide with z axis 
and equatorial axes locate on the Oxy plane, as shown 
in Fig. 1. Without loss of generality, incident waves are 
defined to radiate with an oblique angle of 00 and the 
wavefront is parallel to y axis. Since the wavelength is 
much longer than the overall length of the body, k K  1 
(where k is the wave number), the force (moment) 
from fluid is approximately equal to the integral of the 
pressure (cross product of pressure and the moment 
arm of force) on the body surface S,

S
фг x npdS,
S

дф,
= P0

(6)

i—Translational movement and force analysis.

where Kt = Mu/m0 denotes a dimensionless coefficient 
of added mass. It is evident that the acoustically 
induced translational motion is only dominated by 
densities and added-mass coefficients. Apparently, 
motions along polar and equatorial axes present the 
non-negligible difference in virtue of the incongruous 
added-mass coefficients when the body is non-neu­
trally buoyant. In the low-frequency approximation, it 
is indicated from [5, 11] that acoustic added masses for 
spheroids are identical to hydrodynamic ones, which 
exhibit the frequency-independent closed form. For 
prolate spheroids, the added-mass coefficients given 
in [7] are expressed as

K = K = a p
px py 2 -  a p

K = —-p-
pz 2-Yp

a p 2e
l - e 2
2e3

ln 1 + -
1 -  e ’

Yp
2 (1 - e 2)

3e
1 + -
1 -  e

(11)
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Added-mass coefficient K

Fig. 2. Added-mass coefficients of fluid versus eccentricity 
in terms of translational motion of spheroids.

and for oblate spheroids they are

Kox = Koy = (Ox), Koz = - b -  (Oz),
y 2 -  a o 2 -  Yo

1 -  в2,..._-1_ 1 -  e2
« o  =  3 ■sin e -  -

2 ’ (12)

- J l -
-1 . 

2 sin e

e e

Yo =
e

It is obviously demonstrated from Eqs. (11), (12), 
and Fig. 2 that the added-mass coefficients are com­
pletely determined by the eccentricity, and when e —► 
0 (K = 0.5) the prolate spheroid and oblate spheroid 
convert to spheres, and when e 1 (K = 1) the pro­
late spheroid and oblate spheroid transform into a cyl­
inder and a thin disk respectively.

Through utilizing the exceptional characteristic of 
motions of spheroids that are similar to spheres, it is evi­
dently understandable that the inertial acoustic vector 
receivers based on spheroids are distinctly capable of 
two-dimensional reception of acoustic particle velocity. 
However, due to the discrepancy between responses 
along polar and equatorial axes, the feasibility of three­
dimensional reception demands further analysis.

Here, for the oblique incidence of the acoustic 
wave with an angle of 00, the arctangent arithmetic 
directly using velocity components is commonly 
employed to estimate the pitch angle when the body is 
used as a vector receiver, and that is

tan 0 = —. (13)
U

Substituting Eqs. (9) and (10) into Eq. (13), the angu­
lar deviation can be easily written as

Д0 = arctan 1 + Kx 
Ps/ P0 + Kx

1+Kz 
Ps/ P0 + KZ

tan001 -  00. (14)

Here, it is noted that the deviations emerge only for 
non-neutral buoyant spheroids and are also closely 
related to the added-mass coefficients and the degree 
of incident angle. Figures 3a and 3b show that when 
Ps/P0 = 1.2 and e —► 1, the maximal value of deviation 
is approximately 2.5° for the prolate spheroid and —5° 
for the oblate spheroid. For a more precise solution, 
the derivative operation could be performed upon 
Eq. (14) to obtain the maximum Д0 and the corre­
sponding incident angle:

0 0max

= arcsin 1+K z

IPs / P0 + Kz,
1+Kx + 1+Kz )

Ps / P0 + Kx Ps/ P0 + K j
(15)

ii— Rotational movement and moment analysis.

A0, deg (b)

Fig. 3. (a) Estimated angle deviation for prolate spheroids and (b) oblate spheroids, when using the arctangent of velocity com­
ponent Uz versus Ux in the case of obliquely incident angles from 0° to 90° with varying eccentricities, ps/p0 = 1.2.
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Fig. 4. (a) Relationship between the inherent frequency of rotational motion and the amplitude of sound wave, as well as eccen­
tricity, when there is a steady velocity, and (b) is the time waveform of the angular velocity driven by harmonic waves, (l = 0.1 m, 
e = 0.6, ps/p0 = 1, 00 = 45°, U0 = 15 m/s, k l = 0.015).

According to the characteristic of inertial ellip­
soid in rigid motion, the rotational oscillation could 
keep stable around the y axis, and therefore the 
moment in Eq. (6) is

г X n)y ф0dS -  p0 j j  <U  X n)y Ф0 dS, (16)
S S

where, as mentioned in Eqs. (2) and (5), the first inte­
gral term can be represented as

P0J # (г X n)y ^0dS = - dd-B yy (Cj = 0), (17)
S

and for the second integral term, by using the added- 
mass tensor, the integral term can be further written as

P0 j j (U  x n)уФ0dS = (Mxx -  Mzz) JUU , (18)
S

where U0x and U0z are acoustic particle velocity com­
ponents along the x axis and z axis respectively, and

(U0 X n)y = U{]xnz -  U{)znx . (19)
For a free prolate spheroid, it evidently can execute 
oscillations governed by

(Iy + Byy) ^  + (Mxx -  Mzz) Ul^n-® = 0, (20)
dt 2

where Iy is the rotary inertia of the spheroid around the 
y axis and Byy denotes the associate added rotary iner­
tia of the fluid. Since Eq. (20) belongs to variable- 
coefficient nonlinear equations, it is difficult to 
directly seek an analytical solution, and as a result the 
numerical computation was conducted based on 
MATLAB to obtain the approximate solution.

Firstly, for a special case of the uniform and steady 
velocity such as the hydrodynamic flow (U0 is time- 
independent), Eq. (20) is similar to the undamped

nonlinear vibration formula of a simple pendulum, 
and hence the accurate solution can be expressed by 
Legendre elliptic integral and Jacobian elliptic func­
tion.

Since the formula satisfies the condition of Hamil­
ton system [13], we can assume that

d0
d t

Jnю0 m2 sin20 ,

®0 U 0
iM x lM z

Iy + Byy
m = sin 0,

(21)

Then, the inherent frequency for the angular motion 
can be effortlessly obtained:

g>0

2K(m),

K ( m) = J-
1 - ; 2 2- m sin ф

-_dq,

(22)

sin 0 = m sin ф,

where ю0 denotes the inherent angular frequency of 
angular oscillation that is similar to a simple pendulum 
in the case of small incident angles, and K(m) is the 
Legendre complete elliptic integral of the first kind. 
Figure 4a demonstrates that the inherent frequency is 
exceptionally proportional to the amplitude of inci­
dent sound wave and the eccentricity. As for acoustic 
particle velocity of infinitesimal small amplitude 
waves, the inherent frequencies of angular oscillation 
tend towards zero.

In the Legendre elliptic integral of the first kind, we 
put p = sin ф, and then

±®01 = f 1 ------- dp, (23)
0 (1 -  P2)(1 -  mp2)
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a i/u 0 a i/u 0

Fig. 5. (a) Initial amplitude of angular velocity of prolate spheroids and (b) oblate spheroids, when the inherent frequency is much 
lower compared to incident waves (l = 0.1 m, p jp $  = 1, U0 = 1 m/s, k l = 0.1).

where sin9  can be considered as the function of ю0/ 
and hence we can get the solution through seeking the 
inverse function of Eq. (23):

sinф = ±sn(ю01, m), (24)
where sn(®0i, m) indicates the Jacobian elliptic sine 
function. Combining Eqs. (21), (22) and (23), the 
angular velocity is

Q.(t) = ±2®0mcn(ю01, m) (m = sin00), (25)
where cn(®0i, m) denotes the Jacobian elliptic cosine 
function, and cn2u = 1 — sn2u.

When the harmonic sound waves possess a much 
higher frequency than the inherent frequency of rota­
tion, the time waveforms of motion are computed and 
presented in Fig. 4b, which distinctly exhibits the 
modulated angular oscillation resembling the beat- 
frequency vibration. The oscillation consists of two 
parts, the low-frequency swing motion with inherent 
frequency of rotation, and the high-frequency angular 
oscillation with the same frequency as the incident 
sound wave. Here in the computations, let l = 0.1 m, 
e = 0.6, рУр0 = 1, 00 = 45°, U0 = 10 m/s, and the fre­
quency of the sound wave satisfies kl = 0.015, so that 
the wavelengths are much longer than the overall 
length of the body. In order to conveniently demon­
strate the level of rotational motion, the angular veloc­
ity is presented in terms of the velocity of the spheroid 
pole normalized on the velocity of incident sound 
wave, and that is Ql/U0.

The initial amplitude of angular velocity is com­
puted through a numerical approach, as illustrated in 
Fig. 5, and it can be concluded that the maximum 
angular velocities appear at the angle of about 00 = 45° 
and increase with the eccentricity growing up. For 
example, the maximal velocity ratio is approximately
0.47 for a prolate spheroid and 0.12 for an oblate 
spheroid when e = 1, l = 0.1 m, ps/p0 = 1, U0 = 1 m/s, 
kl = 0.1.

CONCLUSIONS

Long sound waves induced motions to spheroids 
are analyzed through analytical derivation including 
translational and rotational movements. Therein, the 
translational amplitude responses are described by an 
identical compact formula that entirely consists of 
densities and added-mass coefficients, which consoli­
date the sound reception theories of spherical and 
cylindrical acoustic vector receivers, as well as disc­
shaped ones. Spheroidal bodies respond uniformly to 
the horizontal two-dimensional plane sound waves, 
but inconsistently to vertical incidence because of the 
discrepancy of the added-mass coefficients, which will 
result in estimated angular deviations due to variant 
sensitivities between different channels, when there 
are identical vibration sensors mounted along differ­
ent axes in spheroids. Consequently, accurate calibra­
tions are definitely indispensable before acoustic vec­
tor receivers are employed as measurement tools.

Moreover, an oblique incidence could engender 
moments that definitely produce a nonlinear angular 
movement around the equatorial axes of spheroids, 
which presents modulated oscillation similar to the 
beat-frequency motion, and the inherent frequency is 
closely related to the strength of incident waves. Under 
conventional considerations, excessive care should be 
taken of that the rotational motion introduced centrip­
etal acceleration is treated as disturbances that should 
be eliminated, and therefore the vibration sensors are 
commonly placed in pairs in the center of bodies with 
signal-difference output [12]. Otherwise, it can be also 
concluded that the angular velocity could bring an 
increment in the total velocity at the pole of spheroids, 
and therefore by contraries, a vector receiver could 
benefit from the rotational motion through embedding 
a pickup at the top of spheroids instead.
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