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AND WAVE THEORY
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Abstract—Axisymmetric acoustic wave propagating in a shear pipeline flow confined by a rigid wall is studied 
in the two-part paper. The effects of viscous friction and thermal conduction on the acoustic wave propagat­
ing in the liquid and perfect gas are respectively analyzed under different configurations of acoustic frequency 
and shear mean flow. In Part 2  of this paper, comprehensive analysis of the effects of shear mean flow and 
acoustic frequency on the features (relative phase velocity and attenuation coefficient) of the acoustic wave 
are numerically addressed in cases of water and perfect gas respectively. Comparisons between the non-isen- 
tropic and isentropic models are provided in details. Meanwhile, discussions of the thermoviscous effects on 
the acoustic wave between water and perfect gas are given.
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INTRODUCTION

Wave propagation in the pipeline flow is of great 
interest in both theoretical and industrial applications 
[1—6]. In the aircraft engineering, for example, partic­
ular considerations are placed on the prediction and 
attenuation of engine noises [7—13]. The prediction of 
aeroacoustic features is also important in the catalytic 
converter design of a transport system [14, 15]. In the 
ultrasonic pipeline flow measurement [16, 17], accu­
rate prediction of ultrasonic wave propagation is of 
great importance on the improvement of measure­
ment performance.

In the first part [18], mathematical descriptions of 
axisymmetric wave propagation in the presence of a 
shear mean flow confined by a circular rigid wall are 
formulated. The proposed models of the non-isen- 
tropic and isentropic acoustic waves relax the con­
straint of Zwikker and Kosten theory which makes 
sense in the case that only the fundamental mode 
exists. As a result, the features of high-order acoustic 
modes can be analyzed using proposed models. Based 
on Fourier—Bessel theory, the first part of this paper 
gives solutions to the acoustic models in the liquid and

1 The article is published in the original.

perfect gas respectively and then presents a general 
procedure of iteratively calculating the dimensionless 
wavenumber. The validity of the proposed models is 
presented as well.

In this part, the authors concentrate on the analysis 
of wave propagation in the presence of high-order 
modes based on the theoretical contributions in the first 
part. Particular considerations are placed on the relative 
phase velocity and attenuation coefficient under the 
effects of the flow profile, acoustic frequency and ther­
moviscous dissipation. Meanwhile, the difference of 
non-isentropic and isentropic models are highlighted in 
the liquid and perfect gas respectively. It should be 
noticed that the pipeline radius also changes the fea­
tures of the acoustic wave which can be easily handled 
using proposed models. Readers can consult similar 
analysis in the case of a uniform flow [19].

THE EFFECT OF FLOW PROFILE

This section deals with the influence of flow profile 
on the acoustic wave propagating forwardly and back­
wardly in the fluid confined by a circular rigid wall. 
Specifically, numerical calculations of wave propagat­
ing in liquid are based on water with the coefficients
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The coefficients of the third-order polynomial function of 
sound speed

a 0 a! a 2 a 3

1449.2 4.6 -0.055 0.00029

being the density p0  = 1000 kg/m3 , special heat ratio 
Y = 1, volume thermal expansion p = 0.207 x 10- 3  

1/°C, heat coefficient at constant pressure cp = 
4181.3J/(kg K), thermal conductivity Kth =
0.5984 W/(k m), shear viscosity n = 1 x 10- 3  kg/(s m) 
and bulk viscosity Z = 2.4n. Meanwhile, the coefficients 
used in the case of perfect gas are p0  = 1.225 kg/m3 , y = 
1.4, cp = 1184 J/(kg K), Kth = 0.0786 W/(k m), n = 
4.15 x 10- 5  kg/(s m) and the gas constant R  = 
287J/(kg K). The steady temperature of the wall and 
the pipeline radius are Т^ц = 293 K (20°C) and R = 0.1 m. 
Numerical calculations are concentrated on the wave 
propagating in the laminar flow with the profile

M(x) = 2 M( 1 -  x2), (1)

where M is the averaged mean Mach number. Accord­
ing to the mathematical formulation in the first part, 
the steady temperature in water satisfies

- d_f Щ  = _ пвТй(-M d_ f  dM  _ ПСf M 2,
xdxf  dx x Kth dxf  dxx Kth f  dxx ’ (2)

70 (x = 1 ) = 7wall,

while the corresponding dynamic equation in the per­
fect gas is

1_d_ fx 7  = _ ПС2 Md  fx M  _ ПС- f  dM\2,
xdxf  dxx Kth dxf  dx x Kth f  dx' (3)

70(x = 1 ) = 7wall'
In water, the adiabatic sound speed c0, which is 

approximately a function of the steady temperature, 
can be written as a third-order polynomial expression 
with [16]

3
С0 = £  a„( 70 _ 273)n, (4)

n = 0
where (T0— 273) is restricted to be in the range 0— 
95°C and the coefficients a n are listed in table.

It should be noticed that under the current config­
urations, some high-order modes can turn out and 
propagate in the fluid. However, present paper ana­
lyzes the features of the first two modes propagating in 
water and perfect gas. Physically speaking, the exist­
ence of a specific acoustic mode is determined by the 
corresponding cut-off frequency. In the case of an 
inviscid fluid, discussions of the cut-off frequency 
were summarized by Boucheron et al. [20]. Further­
more, present authors [21] investigated the problem in 
the case of a viscous fluid on the neglect of thermal 
conduction. Frankly speaking, it may be hard to cal­
culate the cut-off frequency of a specific acoustic 
mode under the effect of thermoviscous dissipation, 
however, the existence of the possible acoustic modes 
can be verified by plotting the absolute value of 
det(G(R)) shown in part 1 as a function of the axial

A, x10-4 dB/m

Fig. 1. The effect of flow profile on the relative phase velocity and attenuation coefficient of the fundamental non-isentropic and 
isentropic acoustic waves propagating in a tube filled with water. (a) relative phase velocity; (b) attenuation coefficient. The leg­
ends are placed in Fig. 1a.
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1/KR A, x10-5 dB/m

M M

Fig. 2. The effect of flow profile on the relative phase velocity and attenuation coefficient of the second non-isentropic and isen- 
tropic acoustic waves propagating in a tube filled with water. (a) relative phase velocity; (b) attenuation coefficient. The legends 
are placed in Fig. 1a.

dimensionless wavenumber K. Similar manipulations 
can be found in Chen et al. [21] and Sobolev [6].

The Case of Liquid
Figure 1 respectively demonstrates the relative 

phase velocity (defined by 1/KR) and attenuation coef­
ficient (defined by A = |8.б8б£0К1 [dB/m]) of the first 
mode, while Fig. 2 shows the features of the second 
mode. Particularly, the characteristics of the non-isen- 
tropic and isentropic acoustic waves propagating for­
wardly and backwardly are compared. The legends of 
these figures are displayed in Fig. 2a. Specifically, 
“non-isentropic” and “isentropic” represent that the 
numerical results are calculated from the non-isen- 
tropic acoustic and isentropic models respectively; 
“down” and “up” show the downstream and upstream 
propagation.

Under the presence of a steady flow, the relative 
phase velocity in the downstream propagation is 
amplified compared with the case of the stationary
fluid (M = 0). Meanwhile, the attenuation coefficient 
decreases as the process of viscous friction becomes 
short. On the other hand, the steady flow inhibits the 
backward acoustic wave propagating in the fluid. The 
thermoviscous dissipation then becomes large, leading 
to an increase of the attenuation coefficient.

Compared with the first mode, the influence of the 
steady flow on the second mode is more complicated 
as shown in Fig. 2. Furthermore, with the increase of 
the mean Mach number, the difference between the 
non-isentropic and isentropic acoustic waves in the

downstream propagation shows obvious. For each 
mode, the relative phase velocity of the non-isentropic 
acoustic wave turns out to be larger than that of the 
isentropic simplification. On the other hand, variation 
of the attenuation coefficient is different between the 
two modes. Further discussions are placed in the fol­
lowing subsection.

The Case of Gas
Figure 3 respectively demonstrates the relative 

phase velocity and attenuation coefficient of the first 
mode, while Fig. 4 shows the features of the second 
mode. Particularly, the characteristics of the non-isen- 
tropic and isentropic acoustic waves propagating for­
wardly and backwardly are compared. The legends of 
these figures are displayed in Fig. 2a. Obviously, the 
difference between the non-isentropic and isentropic 
acoustic waves is extremely distinct, which reveals that 
the energy transformation through the process of ther­
mal conduction is more important in the case of per­
fect gas than that in the case of water.

While the tendency of the relative phase velocity as 
a function of the mean Mach number behaves similar 
in the perfect gas and water, the attenuation coefficient 
in the perfect gas is distinct from that in water. For the 
first mode, the attenuation coefficient in the down­
stream propagation decreases against the mean Mach 
number in water while the attenuation coefficient in 
the perfect gas increases. The behavior of the attenua­
tion coefficient of the upstream propagation shows 
more complicated in the perfect gas.
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146 X IA O Q IA N  C H E N  et al.

1/kr A, dB/m

Fig. 3. The effect of flow profile on the relative phase velocity and attenuation coefficient of the fundamental non-isentropic and 
isentropic acoustic waves propagating in a tube filled with perfect gas. (a) relative phase velocity; (b) attenuation coefficient. The 
legends are placed in Fig. 3a.

1/KR A, dB/m

M M

Fig. 4. The effect of flow profile on the relative phase velocity and attenuation coefficient of the second non-isentropic and isen- 
tropic acoustic waves propagating in a tube filled with perfect gas. (a) relative phase velocity; (b) attenuation coefficient. The leg­
ends are placed in Fig. 3a.

Physically speaking, without the presence of a 
moving flow, an acoustic wave can disturb the fluid 
particles, which brings about viscous friction between 
the particles. The vibration energy of an acoustic wave 
then transforms to the internal heat. In the presence of 
a shear flow, the shear force amplifies the energy dissi­
pation of wave. An increase of attenuation coefficient 
in the downstream propagation as shown in Figure 3b 
reveals that the shear force regulates the first mode

into a layer near the pipeline wall where the shear force 
is the largest over the pipeline radius. As a result, the 
corresponding attenuation coefficient goes up. On the 
other hand, the shear force channels the backward 
acoustic wave to the layer near the pipeline center 
where the shear force is the smallest. The energy dissi­
pation then becomes slight. However, the existence of 
the flow slows down the propagation speed and then 
finally enlarges the attenuation coefficient.

ACOUSTICAL PHYSICS Vol. 62 No. 2 2016
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A, x10-4 dB/m

f, x104 Hz f, x104 Hz

Fig. 5. The efTect of acoustic frequency on the relative phase velocity and attenuation coefficient of the fundamental non-isen- 
tropic and isentropic acoustic waves propagating in a tube filled with water. (a) relative phase velocity; (b) attenuation coefficient. 
The legends are placed in Fig. 5a.

A possible problem can be that why the trends of 
the attenuation coefficients between water and perfect 
gas are distinctly different under the same configura­
tion of the acoustic frequency, pipeline radius and flow 
profile. A possible explanation may be that the wave­
length of the acoustic wave in water is larger than that 
in the perfect gas under the same acoustic frequency. 
The effect of the shear force on the acoustic wave with 
a smaller wavelength is easier than that with a larger 
wavelength.

The tendency of the attenuation coefficient of the 
second mode in the downstream propagation as 
shown in Fig. 4b behaves similar to the case of water as 
shown in Fig. 2b. However, change of the attenuation 
coefficient in the upstream propagation is more com­
plicated than that in water. Initially, the increasing of 
the mean Mach number decelerates the backward 
propagation, leading to an increment of the attenua­
tion coefficient. Meanwhile, the influence of the shear 
force also adds contributions to the increment of the 
attenuation coefficient. When the shear force is so big 
that the corresponding attenuation coefficient 
decreases, the total attenuation coefficient begins to 
decrease.

THE EFFECT OF ACOUSTIC FREQUENCY
This section analyzes the effect of the acoustic fre­

quency on the first two modes in the presence of the 
laminar flow with the mean Mach number M  = 0.1 
while other parameters are the same as listed in the 
previous section.

The Case of Liquid

Figure 5 shows the effect of the acoustic frequency 
on the features of first mode while Fig. 6 plots the fea­
tures of the second mode influenced by the acoustic 
frequency. With the increase of the acoustic frequency, 
the difference of the features between the non-isen- 
tropic and isentropic acoustic models is not distinct. 
Furthermore, the relative phase velocity of each mode 
gradually goes down to converge as the acoustic fre­
quency goes up.

As the acoustic frequency climbs, the attenuation 
coefficient of the forward wave quickly ascends with­
out a limit as shown in Fig. 5b. However, the attenua­
tion coefficient of the backward wave slowly goes up 
and surpasses that of the forward wave. As explained in 
the previous section, the increase of the acoustic fre­
quency leads to a decrease of the acoustic wavelength. 
The effect of shear force can more easily channel the 
acoustic wave which has shorter wavelength to the 
pipeline center in the downstream propagation and to 
the pipeline wall in the upstream propagation.

The tendency of the attenuation coefficient of the 
second mode in Fig. 6b with respect to the acoustic 
frequency is different from the first mode in Fig. 5b. 
With the increase of the acoustic frequency, the atten­
uation coefficient of the upstream propagation goes up 
more quickly than that of the downstream propaga­
tion. It can be learned that the effects of acoustic fre­
quency and flow profile on the acoustic wave are 
dependent.
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1/KR A, x10-4 dB/m

Fig. 6. The effect of acoustic frequency on the relative phase velocity and attenuation coefficient of the second non-isentropic 
and isentropic acoustic waves propagating in a tube filled with water. (a) relative phase velocity; (b) attenuation coefficient. The 
legends are placed in Fig. 6 a.

1/Kr A, dB/m

Fig. 7. The effect of acoustic frequency on the relative phase velocity and attenuation coefficient of the fundamental non-isen- 
tropic and isentropic acoustic waves propagating in a tube filled with perfect gas. (a) relative phase velocity; (b) attenuation coef­
ficient. The legends are placed in Fig. 7b.

The Case of Gas

Figure 7 shows the effect of the acoustic frequency 
on the features of first mode while Fig. 8 plots the fea­
tures of the second mode influenced by the acoustic 
frequency. The legends of the figures in Figs. 7 and 8 
are identical to that in Fig. 6. Clearly, the tendency of 
the relative phase velocity of each mode in the perfect 
gas is similar to that in water. As the wavelength of the

acoustic wave in the perfect gas is smaller than that in 
water, the influence of the shear force is more power­
ful. From Fig. 7b, it can be learned that the attenua­
tion coefficient of the backward wave finally overtakes 
the attenuation coefficient of the forward wave in the 
case of a large frequency, which shows that the viscous 
dissipation behaves differently when the configura­
tions of acoustic frequency and flow profile changes.
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1/KR A, dB/m

Fig. 8. The efTect of acoustic frequency on the relative phase velocity and attenuation coefficient of the second non-isentropic 
and isentropic acoustic waves propagating in a tube filled with perfect gas. (a) relative phase velocity; (b) attenuation coefficient. 
The legends are placed in Fig. 8 b.

In the case of a low acoustic frequency, the differ­
ence of the attenuation coefficients between the non- 
isentropic and isentropic acoustic models is slight. 
However, with the increase of the acoustic frequency, 
the difference becomes obvious especially in the 
upstream propagation. The effect of a steady flow also 
has similar tendency as shown in Figs. 3b and 4b. 
Compared with non-isentropic acoustic wave, the 
attenuation coefficient of the isentropic wave behaves 
more sensitive to the acoustic frequency as well as the 
flow profile, except the first forward mode. It reveals 
that the thermal conduction plays an important role in 
the wave propagation along the perfect gas.

CONCLUSIONS

This paper numerically analyzes the features (rela­
tive phase velocity and attenuation coefficient) of the 
first two axisymmetric acoustic modes propagating 
forwardly and backwardly along the laminar flow con­
fined by a circular rigid wall. Parametric analysis of the 
effects of the flow Mach number and the acoustic fre­
quency are addressed in liquid and perfect gas respec­
tively. Meanwhile, the influence of thermoviscous dis­
sipation is demonstrated. Numerical comparisons 
reveal that:

1—Although the isentropic acoustic model may be 
a reasonable alternative to the non-isentropic model 
in liquid, the difference between the two models may 
be amplified if  acoustic frequency and steady flow 
Mach number becomes large. On the other hand, the

isentropic acoustic model may be controversial in the 
case of the perfect gas.

2—  The shear effect greatly changes the features of 
the acoustic wave propagating backwardly and for­
wardly. Such influence is extremely obvious when the 
acoustic wavelength is short.

3—  The effects of the shear flow and acoustic fre­
quency act independently on the acoustic wave. To get 
a highly accurate prediction, these factors must be 
considered coherently in the mathematical modeling.
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