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Abstract— The method of wave function expansion is adopted to study the three dimensional scattering of a 
plane progressive harmonic acoustic wave incident upon an arbitrarily thick-walled helically filament-wound 
composite cylindrical shell submerged in and filled with compressible ideal fluids. An approximate laminate 
model in the context of the so-called state-space formulation is employed for the construction of T-matrix 
solution to solve for the unknown modal scattering coefficients. Considering the nonaxisymmetric wave 
propagation phenomenon in anisotropic cylindrical components and following the resonance scattering the
ory which determines the resonance and background scattering fields, the stimulated resonance frequencies 
of the shell are isolated and classified due to their fundamental mode of excitation, overtone and style of prop
agation along the cylindrical axis (i.e., clockwise or anticlockwise propagation around the shell) and are iden
tified as the helically circumnavigating waves.
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1. INTRODUCTION

It is not more than two decade that Resonance 
Acoustic Spectroscopy (RAS) technique has been 
proven to be an effective tool for material character
ization purposes and non-destructive testing/evalua- 
tion of materials [1—6], remote classification of sub
merged targets [3, 4, 7], and on-line monitoring of 
elastic components [8, 9]. In this technique, the 
dependency of the resonance features of the target 
component to its bulk physical properties such as stiff
ness matrix, density and geometrical parameters are 
utilized to set an inverse scattering solution, in order to 
evaluate the objective property of the component by 
correlating the measured spectra to the theoretical 
ones through iterative numerical algorithms. There
fore, this technique is necessitous to the complicated 
resonance response function expected from an even 
undamaged target component. Hence, a theoretical 
resonance scattering model and a good understanding 
of the resonance excitation phenomenon is essential 
[10-15].

Cylindrical components are frequently used in 
practical engineering. Consequently, there have been 
several research works on their acoustic response, and 
in particular, the scattering of acoustic waves from 
such structures has been an active area of research for

1 The article is published in the original.

over a century. The first pioneering investigation of 
acoustic wave scattering from submerged solid elastic 
cylinders based on a normal-mode expansion dates 
back to Faran [15]. The three dimensional analysis of 
the problem when the propagation direction of the 
incident wave makes an arbitrary angle with the nor
mal to the cylinder, was considered by Flax et al. [16]. 
The similar problem for a cylindrical shell was studied 
by Veksler [14]. Comprehensive reviews of these topics 
and extensive bibliographies can be found in the works 
of Gaunaurd [12], Uberall [13], and Veksler [14].

The increased use of anisotropic materials in prac
tical engineering has led to activities in this area in 
recent decade. Honarvar and Sinclair [17] developed 
an exact normal-mode expansion for the scattering of 
a compression acoustic wave from an immersed, 
transversely isotropic solid cylinder. Kaduchak and 
Loeffler [18] used the exact 3D elasticity theory to 
examine acoustic scattering from a multilayered trans
versely isotropic cylindrical shell excited by an 
obliquely incident plane wave. Ahmad and Rahman 
[19] developed normal mode expansions to investigate 
the effect of the angle of incidence on the scattering of 
an acoustic wave by a transversely isotropic cylinder 
immersed in a fluid. They exposed three critical angles 
(in spite of two common critical angles of isotropic 
cases) of incidence of a transversely isotropic cylindri
cal cylinder. Kim and Ih [3] extended Honarvar and 
Sinclair’s [17] work by using the normal mode expan-
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sion technique to present a resonance scattering anal
ysis for oblique incidence of a plane acoustic wave 
upon an air-filled, transversely isotropic cylindrical 
shell immersed in water, with application to material 
characterization. Hasheminejad and Rajabi [4] used 
the laminate approximate model in the context of state 
space formulation to study the acoustic scattering 
problem from a submerged orthotropic cylindrical 
shell. They extend their work to the laminated case 
along with the RST-approach to investigate the 
imperfect bonding effects on excited resonance fre
quencies [6]. Kleshchev [20, 21] derived the charac
teristic equations for determination of phase velocities 
of the elastic wave propagation phenomenon in the 
transversely isotropic and orthotropic thin walled 
cylindrical shells. Karabutov et al. [22] employed a 
wideband acoustic spectroscopy with a laser ultra
sound source for quantitative analysis of the effect of 
porosity on the attenuation coefficient of longitudinal 
acoustic waves in carbon fiber reinforced plastic 
(CFRP) composite materials. Polikarpova et al. [23] 
discussed the dependence of the polarization of acous
tic waves on the propagation direction with respect to 
the crystal axes of a tellurium crystal.

In particular, fiber reinforced composite cylinders 
and cylindrical shells have been used as novel types of 
structures providing elevated performance because of 
their adaptability in providing enhanced mechanical 
properties and lightweight. Because such materials 
demonstrate often highly anisotropic behaviour (heli
cal orthotropy or monoclinic anisotropy), it is difficult 
to evaluate the material mechanical properties or to 
monitor the state of health or failure, especially in the 
state of operation, by usual methods. The authors 
believe to the applicability of RAS-technique for reso
nance isolation and classification of highly anisotropic 
cylindrical shells. The purpose of the present study is 
to theoretically ensure about their belief by presenting 
a theoretical solution for the scattering problem based 
on the exact three-dimensional anisotropic elasticity 
and proposing a novel resonance classification and 
identification scheme founded on the wave propaga
tion characteristics of the body. For this idea, a lam i
nate approximate model along with the so-called 
state-space formulation in conjunction with the trans
fer matrix approach are used to investigate the reso
nance scattering phenomenon of a filament-wound 
cylindrical shell of arbitrary thickness. This paper is 
dedicated to the formulation of the work as the part 1. 
In the second part, the numerical results are discussed.

2. FORMULATION
Consider a time harmonic infinite plane acoustic 

wave, with the circular frequency ю, obliquely inci
dent at an angle a  on a submerged and fluid-filled 
helically filament-wound cylindrical shell of infinite 
length, inner radius a0 and outer radius a .  The prob
lem geometry is depicted in Fig. 1, where (x, y, z) is the

Fig. 1. Configuration of problem.

Cartesian coordinate system with origin at O, the z 
direction is coincident with the axis of the cylindrical 
shell, and (r, 0) is the corresponding cylindrical polar 
coordinate system.

2.1. Acoustic Field Equations

Following the standard methods of theoretical 
acoustics, the field equations for an inviscid and ideal 
compressible medium that cannot support shear 
stresses may conveniently be expressed in terms of a 
scalar velocity potential as [24]

v = -Уф, p = p— , V2ф + k2ф = 0, (1)
dt

where v is the fluid particle velocity vector, p is the 
acoustic pressure, p is the ambient density, k = ю/c is 
the wave number for the dilatational wave, c is the 
speed of sound.

The expansion of the plane progressive incident 
wave field, propagating in the surrounding fluid

ACOUSTICAL PHYSICS Vol. 62 No. 3 2016



294 M A JID  R A JA B I

medium, in cylindrical coordinate (see Fig. 1) has the 
form [24]

unknown modal coefficients, by employing the appro
priate normal mode expansions, as

да
Ф inc(r , 0, ю) = Ф0 X  s J " J n(krr)cos(nQ) e'(kzz_<Dt), (2)

n=0

where kz = k sin a , kr = k cos a , k = ю/c1 is the wave 
number in the outer fluid medium 1 (see Fig. 1), ф0 is 
the amplitude of the incident wave, symbol n is the 
Neumann factor (sn = 1 for n = 0, and sn = 2 for n >
0), i = V—1, J n(x) is the cylindrical Bessel function of 
the first kind of order n. The solutions of the Helm
holtz equation for the scattered potential in the sur
rounding fluid medium 1, and the transmitted poten
tial in the inner fluid medium 2 can respectively be 
expressed as a linear combination of cylindrical waves 
as [24]

ф1(г, 0, ю)
да

= X s nin |A(®)cos(n0) + B,,(a>)sm(n0)]
n=0

x Hin)(krr)ei(kzz-at), 
ф2(г, 0, ю)

да
= X snin [C«(®)cos(n0) + DB(®)sm(n0)]

n=0
x J n(Krr)ei(kzZ-mt),

where Kr = ^K2 -  k2z, K  = ю/ c2 is the acoustic wave
number in the inner medium 2, H®(x) = J n(x) + i Yn(x) 
is the cylindrical Hankel function of the first kind of 
order n, Yn(x) is the cylindrical Bessel function of the 
second kind of order n, (An, Bn) and (Cn, Dn) are 
unknown scattering/transmission coefficients.

2.2. State-space Formulation

In a linearly elastic continuum, the equations of 
motion, in the absence of body forces, in terms of the 
stress components <3 ij may be written as [25—27]

—  = MY, (4)
dr

where Y = [uz, u0, ur, a rr, a r0, a rz]T is the state vector, ur, 
ue and uz are the material displacements in the r, 0 and 
z directions respectively and M  is a 6 x 6 coefficient 
matrix whose elements are provided in Appendix I. 
The state vector Y can be expanded in terms of

Y =

u z

u0
u r

a  rr

a  r0

a  rz

aq [v[ )  cos(n0) + wz n(n) sin(n0)]

X

aq[v [ (n) cos(n0) + W0,n(n) sin(n0)]

aq[V r,nCn) cos(n0) + Wrn(n) sin(n0)]

c 44 [  rr,n(n) cos(n0) + r  rr «(n) sin(n0)]

c 44 [2 r0n(n) cos(n0) + Г r0n(n) sin(n0)]

c 44 [2 rz,пЫ) cos(n0) + Г rz„(n) sin(n0)]

}e

(5)

i(kzz-ш t)
да

0n

where n = r/aq is the dimensionless radial coordinate. 
Subsequently substituting (5) into (4) and utilizing the 
orthogonality of trigonometric functions, we obtain

d V
- V  = G M V n, ац

(6 )

where \ n [v z, n, w0, n, v  r, n, ^ rr, n Г r0, n, ̂  rz, n wz, ̂  V0, Ю
r rr, n, Xr0 B, r rz, n]T is the modal state variables vector and 
Gn is a 12 x 12 modal coefficient matrix whose ele
ments are functions of the radial coordinate n and can 
be easily derived.

2.3. Transfer Matrix Solution

At this point, we shall consider the solution to the 
state Eq. (6) by adopting a laminate approximate 
model: the cylindrical shell is discretized into q sublay
ers of equal thickness, hq = h/q (i.e., h = aq — a0 is the 
total thickness of the shell) with the outer radius of the 
m-th sublayer being am = a0 + mhq where m = 0, ..., q. 
All sublayers are perfectly bonded at their interfaces 
and lined up such that their axes of symmetry coincide 
with each other (see Fig. 1). As the thickness of each 
layer is supposed to be very small, the coefficient 
matrix Gn can be assumed constant within each layer,
which we denote as GB(nm_i) for the m-th layer. Thus, 
within the m-th layer, the solution to Eq. (6) can be 
written as

V„(n)
= Vn (hm-1)exp[(p -  hm-1)Gn (nm-1)],

(7)

where (nm- 1  = [a0 + (m -  1)Pq\la q) <n< (nm = [a 0 + 
m h q] / a q) , and m  = 1, ..., q. Subsequent evaluation of
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Eq. (7) at the outer surface of the m-th layer, leads to 
the following useful recurrence relation:

V«(hm) (8)
= V ,(nm-1)exp[  GB(n„_1)/aq ], 

which relates the state variables at the outer surface of 
the m-th layer to those at the inner surface. At last, by 
invoking the continuity conditions between all assum
ing layers, the state variables at the outer radius of the 
cylindrical shell (i.e., at r = aq for which 
nq = aq/aq = 1 ) are favourably related to those at the 
inner radius (i.e., at r = a0 for which p 0 = a0/aq ) via a 
1 2  x 1 2  global modal transfer matrix n, by

V/ffi) = TnVn(h0), (9)

where Tn = n q ,  =1 e x p [qGn(hm-1)/aq ].

2.4. Boundary Conditions
The unknown coefficients (A„, Bn) and (Cn, Dn), as 

well as the unknown elements of the modal state vari
able vectors at the inner surface of the cylindrical shell,

, ч Г 0 0 0 ^0 0 0 0 -̂ 0 -.T .
VB(H0) = LVz.n, WQ.n, Vr,n, Zrr,n, wz>n, V01„, Wr>„, г rr,„] , must
be determined from the appropriate boundary condi
tions imposed at the inner and the outer surfaces of the 
shell. Thus, assuming continuity of normal fluid and 
solid velocities, normal stress and fluid pressure, and 
vanishing of tangential stress at r = a0 and r = aq imply 
that

(-®) Ur (r, 0, ю)| r — V  r (r, 0, ю)| ,,r _w0,aq \r=a0,aq
a rr(r, a  ffl)|r =a0,aq = -P ^  0’ Ю) \r=a„a, , (10)

0re(r, 0, ю)|r=aQ,aq = CTrz(r, 0, ю)|r ̂  = 0.
Ultimately, by making use of (1)—(3) and (9) in 

( 1 0 ), we obtain
Z bX b =  W b, (11)

where XB = [An, Cb, V° „, W0_b, V^, 2°r,B, Bb, Db, W°b,
v 0,n, w°n, r 0rn]T is the unknown modal vector, Z„ is a 
12 x 12 matrix and W„ is a 12 x 1 vector, which ele
ments are given in Appendix II.

2.5. The Global and Resonance Scattering Coefficients
The most applicable field quantities associated 

with acoustic resonance scattering are the total (glo
bal) and resonance scattering coefficients. The total 
scattering coefficient may be obtained from the stan
dard definition of the backscattering form-function 
amplitude, which is written as [14]

|f»(0 = n, w)| lim
r

2 r 9i(r, 0 = n, w)
aq Фте

f n(0 = n, kaq) ,
B=0

(12)

where

fn(0, kaq) = ,2Sn [An cos(„0) + Bn sin(„0)] (13)
д/nikaq

is referred to as the total scattering coefficient corre
sponding to n-th partial wave. The pure resonance 
contribution in the scattering amplitudes of the n-th 
mode can be isolated by subtracting the background 
(geometrical) effect from the total form function as 
follows [14]:

|fn(res)(0, kaq)| = |fn(0, kaq) -  fn(b)(0, kaq)|, (14)
where the inherent background coefficients are 
defined as

fn(b)(0, kaq) = - 7% ^  ABb) cos(„0), (15)
■yjmkaq

in which ABb) is the proper background scattering coef
ficient. In order to obtain the background scattering
coefficients, ABb), the “inherent background approach” 
[28] is employed. The inherent background scattering 
coefficients are given as [28, 29]

A b
A B

where

k r a q J ' „ ( k r a q )  -  J „  ( k r a q ) Q „ 

k r a qH B :) \ k r a q )  -  H n \ k r a q ) Q „

П „ = i

Pi  „ 2 + Q(„Pc/ P2)
Pc Q + („Pc / P2)

4P1

P 2 -  4pc ln(b/a) ’

in which Q = „ 1 + (b/a)2n

1  -  (b/a)2n

„ Ф 0, 

„ = 0,

(16)

(17)

2.6. Wave Propagation Characteristics
The wave propagation along the anisotropic cylin

drical shell can be classified into the helically clock
wise and anticlockwise waves propagating around the 
shell (See Fig. 2) at the circular frequency of ю, with 
the axial wavelength of 2 я/kz and helix angle of
¥  = tan_1(kza/„). The state variables may be repre
sented as

Y ±

'uz ' aquz,B(n) '

u ^ „ (n)

ur
arr

11

I
M

8 ^ „ (h)

c44a r r ,B (n)
®r0 c44a r0 ,B(n)
Prz, c44^ rz ,n(n)_

(18)

where “+” refers to the anti-clockwise wave propaga
tion and “—” refers to the clockwise wave propagation 
type. Introducing these state variables into Eq. (4) and 
following the same procedure that is done for the scat-
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Fig. 2. Clockwise and anti-clockwise circumferential helically propagating wave modes.

tering problem, the state variables at the outer and 
inner surfaces of m-th sublayer are related by Vn (qm) = 

exp \hq G«(Hm-t)/aq]  Vn(nm-1), where the elements of 

G ± (П) are given in Appendix III and Vn =
[й^, щ„, йГ!„, ё  rr,n, ё  re,*, ̂ rr,«lr  is the modal state variable 
vector. The global wave propagation transfer matrix is

also calculated as Tn = n m  =texp\hq Gn(Лт-iVaq]  
which connects the modal state variable vector at the 
inner and outer surfaces of the shell,
Vn(nq) = Tn Vn(n0). The scattered and transmitted 
velocity potential functions are also defined as

ж
ф1(г, 0, ю) = X  s ,/Л(ю) Н(ПХКг) el(kzZ±M~at)

n=0
ж

ф2(г, 0, ю) = X  s/АЛю) J*CK-r) e,(kzZ±n~at).
n=0

(19)

Implementing the transformation relations in the 
boundary conditions, Eq. (10), and neglecting the 
incident wave field, 9 inc = 0, it can be easily shown that

the wave propagation characteristic equation is 
obtained as

л± X B = 0, (20)

where Лп is a 6 x 6 matrix as

0 Л й,12 -T  ±(1.1) T n
T ±(1.2) 
T n 1 0

0 Л й,22 -T  ±(2.1) T n
-T  ±(2.2) 

T n 0 1

Л n,31 Л «,32 -T  ±(3.1)T n -T  ±(3.2) T n 0 0

Л n,41 Л n,42 -T  ±(4.1)T n -T  ±(4.2) T n 0 0

0 Л n,52 -T  ±(5.1)T n -T  ±(5.2) T n 0 0

0 т ±L n,62 T ±(6.1) T n T ±(6.2)T n 0 0

Л n,j 2

= -  T ± u?) (K rs ni n- 1 j ' „(K ra 0) l a a q)

-  TB±(j,4) ( e( j n (K ra {) C4 4),

j  =  1,...,6,

Л«,з1 = K r  e  ni n XJ 'n (K ra {) ® aq ,

An,41 = ®P2E J n+lJ n(K ra ()) l C44,
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and Xn = [Д , ,Bn, u°„, ul„,ul„, u%n J  is the unknown 
modal vector. Remember that the superscripts 0 and 1 
imply the modal normalized state variables at the 
inner and outer radii of the shell. The nontrivial solu
tion of the above relation is found by setting the deter
minant of the coefficient matrix equal to zero; i.e.,
|At| = 0 , and searching for its frequency-wavelength
(kaq = a aq/c1, kzaq) roots.

This completes the background required for the 
acoustic scattering analysis of a submerged and fluid- 
filled filament-wound cylindrical shell via the reso
nance scattering theorem.

4. CONCLUSIONS
The novel features of a state-space method in con

junction with the transfer matrix approach are used to 
present an exact analysis based on the wave function 
expansion to study the scattering of a plane harmonic 
acoustic wave incident at an arbitrary angle upon a 
helically filament-wound (fiber-reinforced compos
ite) cylindrical shell, submerged in and filled with 
compressible ideal fluids. Using the classic acoustic

resonance scattering theory along with the extracted 
dispersion curves associated to the anticipated wave 
propagation phenomenon in the anisotropic cylindri
cal body, a novel methodology has been proposed to 
classify the isolated resonance modes according their 
wave propagation direction (clockwise or anti-clock
wise with respect to the cross section of the cylindrical 
body) and subsequently to identify them as the reso
nance modes of the body.

Finally, the author is hopeful that the proposed 
approach may be considered as an essential tool in the 
complex process of material characterization, nonde
structive testing and evaluation, remote classification, 
and on-line monitoring of mechanical properties of 
composite cylindrical components which are of practical 
importance in numerous industrious applications.

APPENDIX I

'M 11 M 12 M 13 '
M = M 21 M22 M 23

M 31 M 32 M 33 _
where

Г0  0 1 '-aqY 0 " _ c56 c66 ОО

M 11 =

1
—

 1О
_____

1

, M 12 = - в  0

_ n _
, M 13 =

K1 K1

c55 _ c56
_ K1 K1 _

, M 23 - P
- Yaq

L n J

M 21 =

" c132-Y c14P c142-Y c12P_
c11 c1 1fl c1 1 c1 1fl , M 22 =

_ c12 c44
cnfl cn

2 2 / \K2P + K32-Y K4P + K22-Y 
2 + 2 1

K4 + pcaq T 1 | c12 1 j
L n n n n J _П c44 f l l  c11 J_

M 3 1  =
-кцВ -  Y

2 2 i  ~

c44

2..2 aqYp (k , к ч К2P2 PcaqV  2aqYPK2 К 2 2 a(к 3 + к 6 ) ^  K6aqY 2
С44П ■
2

Ц c44 П П

Pca x̂2 к 6р2 2 2 2 K5aq yP К2Р2 aq Yp + 2 2
—  -------bJT  - K 7aqY -------- q----------^ ------—  (  + К 6) - K 5a2 ' - i 2

n f l f l f l

in which p =

c55c66

M 32 —

K2aqy к 4р ct2P Сl4fl-Y
П П2 cnn cn

к 2Р к3а-у _ d4P_ c13flyY
M 33 -

-  2  0  

П

0  - -

к, = ■
c44

2
L n n cnn c11 _ - n_

d
д0 ,

= _d
dz

т = —, and
dt

о4!ия 2
c 12

Y c11c44
2

c56 К  2 _  c24 c12c14 „, _ c23 , k 3 _
c11c44 c44

c12c13 c34К  5 =  - 34

c44
c13c14 c44

К  6 =  —
c44

2
c14 c33К  7 =  - 33- 

c44

2
c13

c44 c44 c11c44 c11c44 c11c44 c44c11
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where cj are functions of material elastic constants and the angle of filaments from the axis of cylindrical shell, 
ф, given in [30, 31].

APPENDIX II

where

P1, n 0 T 3.1 T n T 3.2 T n T 3.3 T n T 3.4 T n 0 0 T 3.7 T n

CO7-Г T 3.9 T n T 3.io T n
0 P2,n 0 0 1 0 0 0 0 0 0 0

P3, n 0 T 4.1 T n T 4.2 T n T 4.3 T n T 4.4 T n 0 0 T 4.7 T n T 4.8 T n T 4-9 T n T 4.10 T n
0 P4,n 0 0 0 1 0 0 0 0 0 0
0 0 T 5.1 T n T 5-2 T n T 5-3 T n T 5-4 T n 0 0 T 5-7 T n T 5-8 T n T 5-9 T n T 5.10 T n

Z n = 0 0 T 6.1T n T 6.2T n T 6.3 T n T 6-4 T n 0 0 T 6.7 T n
T 6.8
T n T 6-9 T n T 6.io T n

0 0 T 9.1 T n T 9.2 T n T 9-3 T n T 9-4 T n P1, n 0 T 9.1 T n T 9-8 T n T 9.9 T n T 9.10 T n
0 0 0 0 0 0 0 P2,n 0 0 1 0
0 0 T Ю.1 T n T 10.2 T n T Ю.З T n T Ю.4 T n P3,n 0 T10.7 T n T 10.8 T n T 10.9 T n T lo.ioT n
0 0 0 0 0 0 0 P4,n 0 0 0 1
0 0 T11.1T n T11-2T n T 11.3 T n T11-4 T n 0 0 T 11.7 T n T11-8T n T 11.9 T n T 11.10T n

_ 0 0 T 12.1 T n T 12.2 T n T 12.3 T n T 12.4 T n 0 0 T12.7 T n T 12.8 T n T 12.9 T n T 12.12 T n

Wn = [ [ 0 , P6,n,0,0,0,0,0,0,0,0,0]'T, and TlnJz (i, j=  1, 2, ..., 12) are elements of the modal
transfer matrix, n.

Pi,n =  -  k r  S n i n  ^ 1 H n > ' ( k r a q ) / ш  a q,

Pi n  = - K r  e  „ i " ~ 1 J 'n(Kra0 ) / ю aq,

Pi, n =-ю р 1б nin+lHtn)(kraq)/C44, 
P4,n = ®p2e ni J„(Kr a0)l  c44,

P5 , n = Ф 0  kr  e nin-1 J'n(kr a q)/ю a q,
P6,n = ®p#0s ni J n(kr aq)/c44,

G±
n

where

'0  0 ' ~-iaqkz 0 '
G±,11 =

0  1
, G ±,12 = _in+— 0

_ n. L n

c56 C66
K1 K1

C55 -  C56

K1 *1.

APPENDIX III

G±,11 G ±,12 G±,13

G ±,21 G ±,22 G ±,23
G ±,31 G ±,32 G ±,33

'  0 0 1

_ in+-----ikza,

c13i k za q^  c u in C14i k za q — C12in — C 12 c44

G ±,21 = C11 
, K in  +

^ С11П 
K 3i k za q

C11 
, K in  +

^ С11П
К 2i k za q , G±,22 =

K4

С1 1П
Pcaq2® 2

1 (

c11

^  -  1 ] 
Л 1 ) _

± 2  1 
L n n

± 2  1 
n n _

2
Ln c44 nl
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