ГЕНЕРАЦИЯ ВЫСШИХ ГАРМОНИК ПРИ РЕЗОНАНСНЫХ КОЛЕБАНИЯХ В ТРУБЕ С ОТКРЫТЫМ КОНЦОМ

© 2017 г. Л. А. Ткаченко*, **, С. А. Фадеев**

*Институт механики и машиностроения Казанского национального центра РАН
420111 Казань, ул. Лобачевского 2/31

**Казанский федеральный университет
420008 Казань, ул. Кремлевская 16а
E-mail: luda_tkachenko@inbox.ru, fadeev.sergei@mail.ru

Поступила в редакцию 18.03.2016 г.

Представлена теория резонансных колебаний на удвоенной и утроенной частотах в трубе, открытой на одном конце. Грациальное условие на открытом конце получено с учетом полигармоничности колебаний скорости на открытом конце и не содержит эмпирических параметров. Достигнуто хорошее качественное и количественное совпадение теоретических и экспериментальных результатов.

Ключевые слова: резонансные колебания газа, открытая труба, скорость, давление, вторая и третья гармоники.

DOI: 10.7868/S0320791916060174

Интерес к колебаниям в трубах обусловлен их влиянием на интенсивность процессов тепло- и массообмена и на динамику тонкостенных конструкций [1—3]. Исследованию их посвящено большое количество работ, часть из которых можно найти в обзорах [4—7]. Нелинейность уравнений движения (внутритрубная нелинейность) и граничных условий обусловливают появление акустотермического эффекта [8, 9], стационарных вторичных течений [10—12], субгармонических колебаний [13, 14]. В случае колебаний в трубе с открытым концом наблюдается пульсирующая струя [15, 16]. Генерация высших гармоник является также одним из нелинейных эффектов. Основываясь на нелинейной теории Честера [17] для резонансных колебаний в трубе с открытым концом, авторам [18] удалось выделить колебания на основной частоте Ω (ω — циклическая частота), на частотах 2ω и 3ω, и экспериментально определить эмпирические параметры, имеющиеся в нелинейном границном условии [17] на открытом конце. Получено удовлетворительное согласие теоретических и экспериментальных данных, соответствующих колебаниям на частотах О и 2ω. Расхождение данных, относящихся к колебанию на частоте 3ω, достигает неприемлемой величины в 60%. Причина этого заключается, с одной стороны, в том, что граничное условие на открытом конце задается с помощью двух эмпирических параметров, с другой стороны, колебания скорости на открытом конце полагаются гармоническими, а не полигармоническими.

В настоящей работе ставится задача рассчитать колебания на частотах 2ω, 3ω при гармонических колебаниях поршня на частоте ω. При этом граничное условие на открытом конце не должно содержать каких-либо эмпирических параметров, а колебания скорости должны быть полигармоническими, т.е. содержать вклад высших гармоник.

Рассмотрим резонансные колебания в длинной цилиндрической трубе с радиусом R, существенно меньшим по сравнению с ее длиной L0. На одном конце трубы расположен гармонически колеблющийся поршень с амплитудой смещения ω0, причем ω0 < ω. Для описания колебаний вводятся параметры [19]

\[M_p = \omega \omega_0 / c_0, \quad H = R \sqrt{\omega_0 / v}, \quad \varepsilon = V / \omega L, \quad Sh = \omega R / V, \]

где \(M_p \) — число Маха для поршня; \(H \) — частотный параметр; \(\varepsilon \) — параметр, описывающий нелинейность внутри трубы; \(Sh \) — число Струхалы, определяющее нелинейность на открытом конце; \(c_0 \) — скорость звука в невозмущенном газе; \(v \) — коэффициент кинематической вязкости; \(V \) — амплитуда колебаний скорости на открытом конце на частоте ω; \(L = l_0 + + \sigma_0 R \) — эффективная длина трубы, \(\sigma_0 \) — поправка Рэлея.

Принятые условия обеспечивают \(M_p \ll 1 \), \(Sh \ll 1 \). Положим также, что толщина акустического потенциального слоя мала по сравнению с ра-
дусом, т.е. \(H \gg 1 \). Наконец примем, что ампли-туда колебаний скорости на открытом конце существенно меньше скорости звука, так что \(\epsilon \ll 1 \), тогда при решении задачи можно использовать метод возмущений.

Рассмотрим граничные условия.

Пусть смещения поршня заданы в виде \(x_{p} = l_{0} \sin \omega t \), тогда безразмерная скорость поршня имеет вид \(\ddot{u}_{p} = M_{p} \cos \omega t \). Особенность этого условия состоит в том, что скорость поршня в точке, которая сама совершает колебания. Переход к эйлеровым координатам совершается по форму-ле \([4]\)

\[
M_{p} \cos \omega t = \ddot{u}(0, t) + x_{p} \frac{\partial \ddot{u}(x, t)}{\partial x} \bigg|_{x=0} + \ldots \quad (2)
\]

Пусть ведущие члены в колебаниях скорости заданы в виде

\[
\ddot{u}(x, t) \equiv r_{1} \sin(k_{0}x + \alpha_{0}) \sin \omega t + r_{2}^{(2)} \times \sin(2k_{0}x + \alpha_{2}) \sin 2 \omega t + + r_{3}^{(3)} \sin(3k_{0}x + \alpha_{3}) \sin 3 \omega t, \quad \alpha_{i} \ll 1,
\]

где \(k_{0} = \sqrt{\frac{\rho}{
ho_{0}}} \) — волновое число в идеальной жидкости; \(r_{1}, \alpha_{i} \) — константы интегрирования. Подставляя (3) в (2), можно получить

\[
\ddot{u}(0, t) = M_{p} \cos \omega t - 0.5M_{p}r_{1} \cos 2 \omega t - M_{p}r_{2}^{(2)} \cos 3 \omega t,
\]

откуда

\[
\ddot{u}_{1}(0, t) = M_{p} \cos \omega t, \quad (5)
\]

\[
\ddot{u}_{2}(0, t) = -0.5M_{p}r_{1} \cos 2 \omega t, \quad (6)
\]

\[
\ddot{u}_{3}(0, t) = -M_{p}r_{2}^{(2)} \cos 3 \omega t, \quad (7)
\]

где нижние индексы указывают на номер гармо-ники, \(\ddot{u}_{i} = u_{i}/u_{0} \) — безразмерная скорость.

Методика расчета граничного условия на от-крытом конце при гармонических колебаниях скорости дана в работе \([20]\). Она базируется на представлении о струйном характере истечения и сферическом втекании в сток, расположенный в выходном сечении трубы. Эта асимметрия приво-дит, во-первых, к появлению в спектре струи порционной составляющей и, во-вторых, к тому, что на расстоянии \(x_{f} \geq 3R \) от выходного сечения спектральный состав скорости струи перестает зависеть от \(x_{f} \). Тогда давление в выходном сечении можно найти из выражения

\[
\ddot{p}(L, t) = 0.5\ddot{u}_{1}^{2}(L, t) - 0.5\ddot{u}_{2}^{2}(L, t) - 0.5\ddot{u}_{3}^{2}(L, t), \quad (8)
\]

где \(\ddot{p}(L, t) = p(L, t)/\rho_{0}c_{0}^{2} \).

Пусть теперь скорость на открытом конце (в выходном сечении) содержит колебания на частотах \(\omega, 2\omega, 3\omega \)

\[
\ddot{u}(L, t) = r_{1} \sin \omega t + r_{2} \sin 2 \omega t + r_{3} \sin 3 \omega t, \quad (9)
\]

где \(r_{1}, r_{2}, r_{3} \) — соответствующие безразмерные ам-плитуды гармоник скорости на открытом конце. Спектральное разложение скорости в пульсирую-щей струе на расстоянии \(x_{f} \geq 3R \) будет иметь вид

\[
\ddot{u}(x_{f} \geq 3R, t) = r_{1} [(0.5m_{0} + a_{0}) + (0.5 + a_{1}) \times \sin \omega t + + a_{2} \cos 2 \omega t + a_{3} \sin 3 \omega t + + a_{4} \cos 4 \omega t + a_{5} \sin 5 \omega t] + + r_{2} [c_{1} \cos \omega t + c_{2} \sin 2 \omega t + c_{3} \cos 3 \omega t] + + r_{3} [d_{0} + d_{2} \cos 2 \omega t + d_{3} \sin 3 \omega t].
\]

Первый член в квадратных скобках справа был получен ранее \([20]\). Второй и третий члены пред-ставляют вклад второго и третьего слагаемых в \(\ddot{u}; \)

Рассмотрим граничное условие на частоте \(\omega \) имеет вид \([20]\)

\[
\ddot{p}_{1}(L, t) = m \ddot{u}_{1}(L, t), \quad (10)
\]

где коэффициент \(m \) определяется как

\[
m = (0.5 + a_{1})(0.5m_{0} + a_{0} + 0.5a_{2}).
\]

Заметим, что ведущие члены в граничном усло-вии для колебаний на частотах \(2\omega \) и \(3\omega \) имеют порядок \(r_{2}^{2} \), тогда

\[
r_{2} - r_{1}^{2} > r_{3}^{2} \quad \text{или} \quad r_{2} > r_{1}^{2}.
\]

Колебание на частоте \(2\omega \) нерезонансное, по-этому резонансные ограничимся в граничном условии для него квадратичным членом.

\[
\ddot{p}_{2}(L, t) = b_{2} r_{2}^{2} \cos 2 \omega t. \quad (11)
\]

Колебание на частоте \(3\omega \) резонансное, поэтому в граничном условии целесообразно сохранить, помимо квадратичных, члены третьего порядка. Тогда получим

\[
\ddot{p}_{3}(L, t) = b_{3} r_{3}^{2} \sin 3 \omega t + + f r_{2} \cos 3 \omega t + gr_{1} \sin 3 \omega t, \quad (12)
\]

где

\[
b_{3} = 0.5[2(0.5m_{0} + a_{0})a_{3} + + (0.5 + a_{1})a_{4} - (0.5 + a_{1})a_{2} + + 0.5a_{2}a_{1} + 0.5)] ,
\]

\[
f = [(0.5m_{0} + a_{0})c_{3} - 0.5(0.5 + a_{1})c_{2} + + 0.5c_{2} + c_{1}] ,
\]

\[
g = [(0.5m_{0} + a_{0})d_{3} + + 0.5(0.5 + a_{1})d_{2} + + a_{2}d_{1}].
\]

АКУСТИЧЕСКИЙ ЖУРНАЛ том 63 № 1 2017
ГЕНЕРАЦИЯ ВЫСШИХ ГАРМОНИК ПРИ РЕЗОНАНСНЫХ КОЛЕБАНИЯХ

Решения уравнений первого (акустического) приближения даны в [21]. В случае $H \gg 1$ они принимают вид

$$p_1 = p_c c_0^2 r_0 \cos z_1 \exp i (\omega t + \psi_1),$$

$$u_1 = r c_0 \sin z_1 (1 - \exp[-(1 + i) \eta]) \exp i (\omega t + \psi_1 - \pi/2),$$

$$\rho_1 = \frac{p_1}{c_0^2} (1 + (k - 1) \exp[-(1 + i) \eta]) \exp i (\omega t + \psi_1 - \pi/2),$$

$$\frac{p_1}{\rho c_p} \left(1 - \frac{1}{(1 + i) \eta \sqrt{\sigma}}\right),$$

где $z_1 = k_0 x \times \left(1 + \beta_1^2 + \beta_1^3\right) + \alpha_1 + \delta_1, k_0 = \omega/c_0$ — волновое число, $\beta_1 = (\delta/2 R) (1 (k - 1) \sqrt{\sigma})$ — дисперсия, $\beta_1^* = -\beta_1^*$ — коэффициент поглощения, $\eta = (R - r)/\delta$ — безразмерная радиальная координата, $\delta = \sqrt{2\nu/\omega}$ — толщина акустического пограничного слоя, σ — число Прандтля, $\kappa = c_p/c_v$ — показатель адабаты, c_p, c_v — удельные теплоемкости при постоянном давлении и объеме соответственно, α_1, β_1 — константы интегрирования, r, ψ_1 — модуль и главное значение аргумента безразмерной амплитуды колебаний.

Для определения констант $\alpha_1, \beta_1, r, \psi_1$ выражение для скорости в (14) усредняем по сечению и используем граничные условия (5) и (11) [20]. В результате получим

$$\alpha_1 = \frac{\pi}{2} - k_0 L \left(1 + \beta_1^*\right),$$

$$\beta_1 = k_0 L \beta_1^* + m r_1,$$

$$r_1 \left[\cos^2 k_0 L \left(1 + \beta_1^*\right) + \left(k_0 L \beta_1^* + m r_1\right)^2 \times \right.$$

$$\left.\sin^2 k_0 L \left(1 + \beta_1^*\right)\right]^{1/2} = M_r,$$

$$\psi_1 = \arctg (\rho \alpha c \cosh \beta_1).$$

При точном резонансе

$$\alpha_1 = 0, \beta_1 = k_0 L \beta_1^* + m r_1, \quad \eta = \frac{1}{2m} \times$$

$$\times \left[\left(k_0 L \beta_1^*\right)^2 + 4m M_r \right]^{1/2} - k_0 L \beta_1^*, \quad \psi_1 = 0.$$

Из (16) следует, что для идеальной жидкости ($\beta_1^* = 0$) связь между r_1 и M_r является квадратичной

$$r_1^2 \sim M_r^2,$$

tогда вместо (6) и (7) можно записать

$$u_2(x, t) \equiv 0,$$

$$u_3(x, t) \equiv 0.$$

Для описания колебаний на частотах 2ω и 3ω воспользуемся системой уравнений, описывающих осредненное по сечению изменение газа в трубе [22]. Применим к ним метод возмущений. В результате для колебаний на частоте 2ω будем иметь

$$\rho_0 \frac{d^2 u_2}{dx^2} + \frac{2\pi m}{R} u_2 + \frac{2\pi m}{R} u_1 = \frac{2\pi m}{R} u_1,$$

$$\rho_0 \frac{d^2 u_2}{dx^2} + \frac{2\pi m}{R} u_2 + \frac{2\pi m}{R} u_1 = -\frac{\partial \rho u_1}{\partial x} - \frac{\partial \rho u_1^2}{\partial x},$$

где $\tau_{n2} = -\frac{\partial u_1}{\partial r} | \frac{d^2 u_2}{dx^2} = $ касательное напряжение,

$$q_{n2} = \frac{\lambda}{2} \frac{d^2 u_2}{dx^2} = $ темповой поток, нижний индекс $w$$

соответствует положению на стенке, черта сверху — осреднению по сечению трубы.

Из (14) легко видеть, что выражение

$$\exp[-(1 + i) \eta], \exp[-(1 + i) \eta \sqrt{\sigma}]$$

при осреднении по сечению трубы дают вклад порядка $\delta/R - (1/\delta) \approx 1$, которым можно пренебречь. Тогда, полагая

$$p_2(x, t) = p_2(x) \exp 2i\omega t, \quad u_2(x, t) =$$

$$= u_2(x) \exp 2i\omega t, \quad \tau_{n2} = \rho_0 u_2(x)(1 + i) \sqrt{\omega} \times$$

$$\times \exp 2i\omega t, \quad q_{n2} = -(1 + i) p_2(x) \sqrt{\omega} \times$$

$$\times \exp 2i\omega t,$$

получим

$$2\rho_0 d^2 u_2(x) + \frac{2\pi m}{R} + \frac{2\pi m}{R} u_2(x)\sqrt{\omega} = 0,$$

$$2i\rho_0 d^2 u_2(x) + \frac{2\pi m}{R} + \frac{2\pi m}{R} u_2(x)\sqrt{\omega} =$$

$$\times (1 + i) p_2(x) \sqrt{\omega} \times$$

$$\times \left[(\kappa - 1) + (\kappa + 1) \cos 2z_1\right].$$

Исключим из системы (21) давление $p_2(x)$, тогда для скорости $u_2(x)$ будем иметь

$$\frac{d^2 u_2(x)}{dx^2} + \frac{4k_0^2}{R} \left(1 + \beta_2^2 + \beta_2^3\right) u_2(x) =$$

$$= -\frac{i0\rho_0^2}{2c_0} \left[(\kappa + 1) \sin 2z_1\right],$$

где $\beta_2 = -\beta_2^* = (\delta/2 R) (1 + (\kappa - 1) / \sqrt{\sigma}), \delta_2 = \sqrt{\nu/\omega}.$

Решая однородное дифференциальное уравнение

$$\frac{d^2 u_2(x)}{dx^2} + \frac{4k_0^2}{R} \left(1 + \beta_2^2 + \beta_2^3\right) u_2(x) = 0,$$

нетрудно убедиться, что оно имеет только тривиальное решение, т.е. величина $2k_0 L (1 + \beta_1^*) = \pi$ не является собственным значением (22), и колеба-
ней будут характеризоваться частным решением
уравнения

\[
\frac{d^2 \tilde{u}_2(x)}{dx^2} + 4k_0^2 \left(1 + \beta' + i\beta' \right)^2 \tilde{u}_2(x) = -\frac{j\omega^2 \gamma}{2c_0} (\kappa + 1) \sin 2z_i. \tag{24}
\]

Введем новую переменную \(y = 2k_0 x \times (1 + \beta' + i\beta') \), при этом в правой части сохранятся только ведущие члены, положив \(\beta'_1 = 0 \). Тогда имеем

\[
u''_1(y) + u'_2(y) = A \sin 2z_i, \quad A = -\frac{jc_0 (\kappa + 1)r_1^2}{8}. \tag{25}
\]

Решение (25) в безразмерной форме имеет вид

\[
u'_1(y) = C_1 \sin y + C_2 \cos y - \frac{0.5\alpha y}{c_0} \cos (y + 2\alpha_1 + 2i\beta_1). \tag{26}
\]

Колебания давления можно определить из второго
уравнения системы (21):

\[
u''_2(y) + u'_2(y) = A \sin 2z_i, \quad A = -\frac{jc_0 (\kappa + 1)r_1^2}{8}. \tag{25}
\]

Решение (25) в безразмерной форме имеет вид

\[
u'_2(y) = C_1 \sin y + C_2 \cos y - \frac{0.5\alpha y}{c_0} \cos (y + 2\alpha_1 + 2i\beta_1). \tag{26}
\]

Константы \(C_1 \) и \(C_2 \) можно найти, если подставить
выражения (26) и (27) в граничные условия (12) и
(17). Удерживая лишь члены порядка \(r_1^2 \), для колебаний
скорости и давления получим

\[
u''_2(x) = \frac{j\omega^2}{16} \left\{ (16b_2 - \kappa + 3) \sin 2k_0 L (1 + \beta'_1)(1 - x) + \right.

\times \cos 2k_0 L (1 + \beta'_1)(1 - x) \bigg\} + \frac{(k + 1) [\pi - 2k_0 L (1 + \beta'_1)(1 - x)]}{16} \times \cos 2k_0 L (1 + \beta'_1)(1 - x) \bigg\}, \tag{28}

где \(\bar{x} = x/\sqrt{L} \).

При точном резонансе \(k_0 L (1 + \beta'_1) = \pi/2 \) вместо
(28) имеем

\[
\bar{u}_2(x) = \frac{j\omega^2}{16} \left\{ (16b_2 - \kappa + 3) \sin \pi \bar{x} + (\kappa + 1) \times \right.

\times \cos \pi \bar{x} \right\}, \quad \bar{u}_2(x) = \frac{j\omega^2}{16} \left\{ (2\kappa - 2 - 16b_2) \times \right.

\times \cos \pi \bar{x} + (\kappa + 1) \sin \pi \bar{x} + 2k - 2 \bigg\} \tag{29}

Рассмотрим колебания на частоте 3\(\omega \). Правые
части уравнений, описывающих эти колебания, имеют третий порядок малости, тогда как в гра
ничном условии на открытом конце ведущие чле
ны имеют второй порядок. Это означает, что нет
необходимости решать полную систему уравне
ний, достаточно рассмотреть однородную систе
му второго порядка

\[
\frac{dp_0}{dt} + \frac{dp_1}{dx} + \frac{2\gamma}{R} = 0, \quad \frac{dp_2}{dt} + \frac{dp_3}{dx} + 2k - 2 = 0, \tag{30}
\]

где нижний индекс относится к номеру гармо
ники, верхний – к порядку приближения. Здесь, так же
как и в случае колебаний на частоте 2\(\omega \), можно
положить

\[
\rho^2_0 (x, t) = \rho^2_1 (x) \exp 3\omega t, \quad \rho^2_1 (x, t) = \rho^2_2 (x) \exp 3\omega t, \tag{31}
\]

Тогда будем иметь

\[
3\rho_0 \rho_1 u''_2(x) + \frac{dp_1(x)}{dx} + 2\rho_0 (1 + i) \rho_2(x) \sqrt{3\gamma /2} = 0, \tag{32}
\]

Исключая из (32) давление, можно получить
уравнение для амплитуды колебаний скорости. В
безразмерной форме оно примет вид

\[
\frac{d^2 \tilde{u}_3''(x)}{dx^2} + 9k_0^2 (1 + i\beta'_1)^2 \tilde{u}_3''(x) = 0, \tag{33}
\]

где \(\beta'_1 = -\beta'_3 = (\delta_3/2R)(1 + (\kappa - 1)/\sqrt{6}), \delta_3 = \sqrt{2\gamma /3}. \) \tag{34}

Решение (33) ищем в виде

\[
\tilde{u}_3''(x) = |r_1^2| \sin \left[3k_0 x (1 + \beta'_2 + i\beta'_3) + \right.

\left. + \alpha_1 + i\beta_3 \right] \exp i (\psi_3 - \pi/2). \tag{34}
\]

Можно показать, что безразмерная амплитуда ко
лебаний давления определяется по формуле

АКУСТИЧЕСКИЙ ЖУРНАЛ том 63 № 1 2017
ГЕНЕРАЦИЯ ВЫСШИХ ГАРМОНИК ПРИ РЕЗОНАНСНЫХ КОЛЕБАНИЯХ

Рис. 1. Зависимость \(\tilde{p}_2(L)/M_p \) от безразмерной частоты \(z \) для трубы длиной \(L_0 = 1.7065 \) м с амплитудой смещения поршня \(l_0 = 2.90 \) мм. Сплошная линия — теория (28), точки — экспериментальные результаты [18].

\[
\tilde{p}_2(2)(x) = r_3(2) \times \\
\times \cos \left[3k_0x \left(1 + \beta_3 + i\beta_3'' \right) + \alpha_3 + i\beta_3 \right] \exp /\psi_3.
\] (35)

Подставляя (34) в граничное условие на поршне (18), сразу получаем

\[
\alpha_3 = 0, \quad \beta_3 = 0.
\] (36)

В граничном условии на открытом конце (13) присутствуют неизвестные величины \(r_2 \) и \(r_3 \). В случае \(r_2 \) достаточно умножить первое из выражений (29) в точке \(x = 1 \) на \(\exp (2i\delta) \), выделить в полученном выражении реальную часть и сопоставить последнюю с формулой (9). Тогда имеем

\[
r_2 = -\frac{\kappa + 1}{16} \pi r_1^3.
\] (37)

Аналогичная процедура с соотношением (34) ведет к зависимостям

\[
r_3 = r_3(2) \sin 3k_0L \left(1 + \beta_3' \right), \quad \psi_3 = 0.
\] (38)

С учетом (37) и (38) граничное условие на открытом конце (13) приводится к виду

\[
r_3(2) = \frac{r_1^2 \left[b_3^2 + ((\kappa + 1)\pi r_1/16)^2 \right]}{\cos^2 3k_0L(1 + \beta_3') + (3k_0LB_3' + gr_1)\sin^2 3k_0L(1 + \beta_3')}
\] (40)

Анализ показывает, что \((\kappa + 1)\pi r_1/16 \ll b_3\), тогда с достаточной точностью вместо (40) можно пользоваться выражением

\[
r_3(2) = \frac{r_1^2 b_3}{\cos^2 3k_0L(1 + \beta_3') + (3k_0LB_3' + gr_1)\sin^2 3k_0L(1 + \beta_3')}
\] (41)

Рис. 2. Распределение скорости \(\tilde{u}_2/M_p \) по длине трубы для \(L_0 = 1.7065 \) м (а) и \(L_0 = 1.2864 \) м (б). Сплошная линия — теория (29) в случае \(b_2 = 0.25 \), штриховая линия — теория (29) в случае \(b_2 = 0.08 \).

АНАЛИЗ ПОКАЗЫВАЕТ, ЧТО \((\kappa + 1)\pi r_1/16 \ll b_3\), ТОГДА С ДОСТАТОЧНОЙ ТОЧНОСТЬЮ ВМЕСТО (40) МОЖНО ПОЛЬЗОВАТЬСЯ ВЫРАЖЕНИЕМ

\[
r_3(2) = \frac{r_1^2 b_3}{\cos^2 3k_0L(1 + \beta_3') + (3k_0LB_3' + gr_1)\sin^2 3k_0L(1 + \beta_3')}
\]
Резонансная частота определяется из выражения
\[
\text{ctg} 3k_0 L(l + \beta') = \frac{(\kappa + 1)}{16b_3} \pi f(3k_0 L\beta' + \gamma t),
\]
откуда
\[
k_0 L(l + \beta') = \frac{\pi}{2},
\]
(43)

Рассмотрим свойства полученных результатов. На рис. 1 представлена зависимость \(\bar{p}_2(L)/M_p \) от безразмерной частоты \(\tilde{z} = (2/\pi)(\omega L_0/c_0) \) для труб длиной \(L_0 = 1.7065 \text{ м} \) с амплитудой смещения поршня \(l_0 = 2.90 \text{ мм} \). Сплошная линия соответствует теории, построенной на втором выражении в (28) при \(b_2 = 0.25 \), точки — экспериментальные данные [18].

Поршни давления для двух длин труб \(L_0 = 1.7065 \text{ м} \) и \(L_0 = 1.2864 \text{ м} \) соответственно даны на рис. 2а, 26. Здесь сплошные линии — теория по первому выражению в (29) при \(b_2 = 0.25 \), штриховые линии — расчет по (29) при \(b_2 = 0.08 \). Видно, что для \(b_2 = 0.08 \) максимум амплитуды колебаний скорости оказывается в полтора раза больше, чем для \(b_2 = 0.25 \), кроме того, и минимум, и максимум для меньшего значения \(b_2 \) оказываются смещеными в сторону открытого конца трубы. Сравнение рис. 2а и рис. 26 также показывает, что в случае более короткой трубы амплитуда колебаний скорости несколько выше, чем в более длинной трубе.

Эпюры давления для двух длин труб \(L_0 = 1.7065 \text{ м} \) и \(L_0 = 1.2864 \text{ м} \) представлены на рис. 3а и рис. 3б соответственно. Сплошная линия — теоретический расчет по второму выражению в (29) при \(b_2 = 0.25 \), штриховая линия — теория при \(b_2 = 0.08 \), точки — экспериментальные данные [18]. Видно хорошее качественное согласование теории и эксперимента. Теория при \(b_2 = 0.08 \) лучше согласуется с экспериментом на второй четверти, однако при приближении к открытому концу трубы разхождения возрастают. Для теоретических данных, рассчитанных при \(b_2 = 0.25 \), наоборот, во второй четверти трубы наблюдаются существен-
ГЕНЕРАЦИЯ ВЫСШИХ ГАРМОНИК ПРИ РЕЗОНАНСНЫХ КОЛЕБАНИЯХ

На рис. 5а и рис. 5б сплошными линиями представлены эпюры скорости \(\frac{\dot{\rho}_3^{(2)}}{\rho_0} \) по (34) и давления \(\frac{\rho_3^{(2)}}{\rho_0} \) по (35) соответственно, точками — экспериментальные данные [18] при \(L_0 = 1.7065 \text{ м} \). Видно достаточно хорошее качественное и количественное совпадение результатов.

Для проверки принятых допущений оценено значение числа Стрюха Ш

Для проверки принятых допущений оценено значение числа Стрюха Ш для условий проведенных расчетов. Подставляя рассчитанные значения скорости колебаний газа на открытом конце трубы для соответствующих параметров, имеем \(\text{Sh} = 0.18 \).

Таким образом, условие \(\text{Sh} \ll 1 \) выполняется.

С П И С О К Л И Т Е Р А Т У Р Ы

6. Гурбатов С.Н., Руденко О.В., Сачев А.И. Волны и структуры в нелинейных средах без дисперсии. Приложения к нелинейной акустике. М.: Физматлит, 2008. 496 с.
10. Галиуллин Р.Г., Тимохина Л.А., Филипов С.Е. Акустические течения при резонансных колебаниях газа в цилиндрической трубе // Акуст. журн. 2001. Т. 47. № 5. С. 611–615.
14. Ткаченко Л.А. Нелинейные колебания газа в открытой трубе при негармоническом возбуждении // Акуст. журн. 2014. Т. 60. № 2. С. 160–165.
20. Галиуллин Р.Г., Галиуллина Э.Р., Пермяков Е.И. Нелинейные резонансные колебания газа в трубе с открытым концом // Акуст. журн. 1996. Т. 42. № 6. C. 769—772.