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Abstract—In this paper, the acoustic field excited by a single force with arbitrary direction in a semi-infinite
elastic space is studied and its mathematical expressions are obtained. It shows that there are many complex
behaviors when the elastic wave reaches the free boundary. The numerical simulation shows that there are
several kinds of waves in the semi-infinite elastic space: direct P wave, direct SV wave, SP wave propagating
along the free surface which can generate Head wave and Rayleigh wave. The forming mechanism of the SP
wave and Rayleigh wave is specially studied. The waveforms at the observation point on the free surface of the
semi-infinite space contain only direct P wave and direct SV wave when the SV wave incident angle is within
the critical ref lection angle. However, if the incident angle from the source to the observation point is exceed-
ing to the critical reflection angle, not only direct P and direct SV wave but also the SP wave and Rayleigh
wave are all be generated. It is focused on the relationships of the direction of single force to the excitation
intensity of each wave. The relationship of each wave packet to the single force and observation direction is
obtained and analyzed.
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1. INTRODUCTION
The acoustic field in semi-infinite elastic space

radiated by different kinds of force systems was origi-
nally studied in the area of seismic waves. Lamb was
the first to study the propagation of a pulse in an elastic
half space. In 1904, Lamb treated four basic problems:
the surface normal line sources, the point load
sources, the buried line sources and point sources of
dilatation, which has taken on the name Lamb’s prob-
lem. More researches on Lamb’s problem have been
studied [1–5]. And the mathematical expressions of
the displacements of the acoustic field due to several
types of force systems were investigated and obtained
[6–9], including a single force. However, in most of
these works, the single force is along or perpendicular
the surface direction of the semi-infinite elastic space
[5, 10]. The acoustic problems related to this situation
have been studied and applied to other field, such as
the surface waves [11–15] and wave propagation in
media with different boundary conditions [16–21].
Nevertheless, some acoustic problems related to the
excitation and propagation characteristic of the waves
in semi-infinite media are not sufficiently studied and
described. In this paper, the acoustic field excited by a

single force with an arbitrary direction in a semi-
infinite elastic space is studied. The mathematical
expressions of the acoustic field are obtained and
acoustic propagation characteristics are analyzed with
the B, P, C coordinate system. The relationships of the
direction of single force to the excitation intensity of
each wave on the free surface is deeply analyzed
through the numerical simulation of the response of
acoustic field at different positions, and several useful
conclusions are obtained. Compared with other stud-
ies, for example [5], the mathematical expressions in
this paper have very explicit physical meanings and
can show us how each wave will propagate when they
reach the boundary. Comparing to [5], this paper is
focused on the influence of the direction of the force
on each wave, especially the SP wave and Rayleigh
wave. It is found that only the SP wave reflected by SV
wave incident at the critical reflection angle can prop-
agate along the boundary. And on the propagation
path in the direction of the single force, only P wave
can propagate, which makes it that the SP wave cannot
be formed when the direction of single force is equal to
the critical reflection angle. It is also found that the
inhomogeneous SP wave turns into the Rayleigh wave,
in order to satisfy the free boundary conditions.
Besides, the relationship of the Rayleigh wave inten-1 The article is published in the original.
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Fig. 1. Model configuration.
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sity to relative depth of source and the direction of sin-
gle force is obtained.

2. PROBLEM STATEMENT
It is convenient to introduce certain fundamental

solutions of the motion equations in the cylindrical coor-
dinate system (r, θ, z) in order to solve the three-dimen-
sional problem. The semi-infinite elastic space is distrib-
uted in z ≥ 0. In Fig. 1, only a plane with θ = 0 is given.
There is a single force F distributed along an arbitrary
direction at point S inside the elastic semi-infinite
medium. We can adjust the direction of the cylinder
coordinate system to make this force located inside the
r–z plane of the coordinate system and located on the
z-axis. Then the force F can be decomposed into a
force Fz along the z-axis and a force Fr along the r-axis.
Thus, the displacements duo to F can be the superpo-
sition of the displacements due to Fz and Fr.

2.1. Introduction of B, P, C Coordinate System
Let ϕ, ψ and χ be the displacement potentials of the

P, SV and SH waves in the semi-infinite elastic space.
The integral solutions in Bessel–Fourier transforma-
tion can be written as [22, 23]

(1)

where ω is the angular frequency, k is the horizontal
wave number, and the n is dependent on the source.

The B, P, C coordinate system was first introduced
by Ben-Menahem [21] in 1968. It is convenient to
introduce B, P, C coordinate system for wave propaga-
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tion in a semi-infinite space. In B, P, C coordinate sys-
tem the displacements expressed by potentials can be
written as

(2)

where the potential ψ has been substituted by kψ for
convenience.

The B, P, C coordinate system is a transformation
of the cylindrical coordinate system. Its base vector
can be written as

(3)

Then, the displacements can be written as

(4)
with

and the stress components can be written as

(5)
with

where: 

From Eqs. (4) and (5), it can be found that the SH
wave is also decoupled independently in B, P, C coor-
dinate system. Thus, we can just consider the situation
of the P–SV wave in B, P, C coordinate system. Then,
the displacement vector Eq. (2) become

(6)

According to the relationship between B, P, C coordi-
nate system and cylindrical coordinate system, the dis-
placements in cylindrical coordinate system can be
written as

(7)

2.2. The Acoustic Field Response
Considering a source exciting the acoustic field at

the point z = zs, the integral solutions of the displace-
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ment potentials in Bessel–Fourier transformation with
the omitted time factor exp(−iωt) for general P–SV
source can be written as

(8)

where , kP and kS are the
wave numbers of the P and SV waves, and the coeffi-
cients  and  are known for a definite source.

Similarly, the reflection displacement potentials
excited by the interface (z = 0) propagates along the
z-axis direction and can be written as

(9)

Then, the total field in semi-infinite space is

(10)

At the surface of the medium, the boundary condi-
tions can be written as

(11)

By Eqs. (5), (10) and (11), we can get

(12)

It is easy to get the solution

(13)

where 

Then, the displacement potentials in a semi-
infinite space have been obtained as the following:

(14)

Eqs. (14) show that the P (or SV) wave cannot satisfy
the free boundary conditions at the surface inde-
pendently. So, when a P (or SV) wave reaches the
boundary of the semi-infinite space, it generates not
only the reflected P (or reflected SV) wave, but also
the converted SV (or converted P) wave.

2.3. The Acoustic Field Excited by a Single Force
with Arbitrary Direction

In this section, the acoustic field for a single force
with arbitrary direction is studied and the displace-
ment potentials are obtained. Only the case, when the
single force is along the z-axis (vertical single force) or
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perpendicular to the z-axis (horizontal single force), is

studied in previous 
1
references.

When the single force is along the z-axis, the
acoustic field is symmetric and independent on the

angle θ. The coefficients  and  in Eqs. (8) are [22]

(15)

The value of ε is 1 for z > zs and –1 for z < zs, and F(ω)
is the Fourier transform of the time function of the
single force. Then, the displacement potentials in
Eqs. (14) become

(16)

When the single force is perpendicular to the z-axis, the coefficients  and  in Eqs. (8) are [22]

(17)

In this case, the displacement potentials in Eqs. (14) become

(18)

For a single force with arbitrary direction, as shown
in Fig. 1, the single force F(ω) is decomposed into a
vertical single force Fz(ω) = F(ω)cosξ and a horizontal
single force Fr(ω) = F(ω)sinξ. It can be seen that the
displacement potentials generated by vertical single
force Fz(ω) are independent on the angle θ and dis-
placement potentials generated by horizontal single
force Fr(ω) have the angle factor cosθ. It is also easy to
find by Eqs. (16) and (18) that the displacement
potentials for the single force with arbitrary direction
can be written as

(19)

where  and  are given by
Eqs. (16) and (18) respectively. It can be seen by

Eq. (19) that the displacement potentials contain the
items independent on the angle θ and related cosθ.

The displacement about the single force with arbi-
trary direction can be obtained by Eqs. (6) and (7).
Then, the displacement field in the time domain can
be calculated by the Fourier transformation in numer-
ical simulation.

2.4. Numerical Simulation and Propagation 
Characteristic of Each Wave Packet

There are many complex behaviors when the elastic
wave reaches the boundary. In this section, the propa-
gation and characteristics of the elastic wave in semi-
infinite space are studied and analyzed through
numerical simulation.
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Fig. 2. The time domain waveform of the single force.
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Table 1. The parameters for numerical simulation

Density P wave velocity SV wave velocity Rayleigh wave velocity Center frequency Pulse width

ρ, kg/m3 cp, m/s cs, m/s cr, m/s f0, kHz tc, μs

7870 5770 3140 2907 500 5

Table 2. The parameters of a vertical single force for numerical simulation

Point name Source name Depth of source zs, mm Horizontal position r, mm Vertical position z, mm

A S 40 20 0
B S 40 500 0

Fig. 3. Sketch of the location of the observation points.
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A cosine envelope pulse is chosen to be the time
function of the single force for numerical simulation,
and its expressions in the time domain can be written as

where f(t) is just the Fourier Transformation of F(ω), tc
is the pulse width in the time domain, f0 is the center
frequency and H(t) is step function.

Here, the parameters of the semi-infinite medium,
pulse width and center frequency of the source for
numerical simulation are given in Table 1. The time
domain waveform f(t) of the single force is given in
Fig. 2, in which the amplitude has been normalized.

The time domain waveform of source function f(t)
is given in Fig. 2, where all the amplitudes have been
normalized.

I. The Simplest Case: a Vertical Single Force (ξ = 90°)

For a vertical single force, the acoustic field is sym-
metrical about the z-axis and independent of θ. The
parameters in Eqs. (16) and (18) for numerical simu-
lation are given in Table 2. Here, as shown in Fig. 3,
two points A and B on the boundary are chosen as the
observation points in order to analyze the response of
acoustic field at different positions.

The particle displacements at the points A and B
are numerical simulated and shown in Fig. 4. The real
and dotted lines are the vertical and horizontal com-
ponents of the particle displacement respectively.

As shown in Fig. 4a, there are two kinds of wave
packets. According to the arrival times of wave, it can
be judged that they correspond to the direct P and SV
waves respectively. It can be also seen from Fig. 4b that
there are four kinds of wave packets. It can be judged
that they correspond to the direct P wave, the SP wave,
the direct SV wave, and the Rayleigh wave respectively.
All the wave packets in Fig. 4 are analyzed and dis-
cussed as the following.
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A. Analysis of the Packets in Full Waveforms

In order to analyze the cause of formation of the SP
wave and Rayleigh wave, it is necessary to consider the
reflection of SV wave on the surface. Fig. 5 gives the
schematic of the reflection of SV wave on the free sur-
face. According to the boundary conditions, the wave
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Fig. 4. The particle displacement waveforms: (a) and (b) are for points A and B respectively.

–8

4

2

0

–2

–4

–6

6
(а)

305 10 15 20 250
Time, μs Time, μs

P SV

P SP SV R

A
m

pl
itu

de
, m

A
m

pl
itu

de
, m

–12

6
4
2
0

–2
–4
–6
–8

–10

8
(b)

200100 120 140 160 18080

uz

ur

uz

ur

×10−15 ×10−17

Fig. 5. The schematic of the reflection of SV wave on the boundary.
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numbers of the incident SV wave and reflected P wave
in the horizontal direction must be equal

(20)

where b is the incident angle of SV wave, a is the
reflection angle of P wave.

With the incident angle of the SV wave increases,
the reflection angle of P wave will increase to π/2 first.
So, as shown in Fig. 5b, there is a critical angle bcr for
SV wave when it is reflected on the boundary. When
the SV wave is incident to the boundary at the critical
angle, it will generates a critical homogeneous P wave
which propagates along the surface with a velocity of
cp, which is named as the SP wave. In Fig. 5b, the
point Y is the critical point where the SP wave can be
formed. But this SP wave cannot satisfy the free
boundary conditions when propagating independently
along the boundary, so it will radiate Head wave [24–27]
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ω ω=
into the half space as it propagates. The critical angle
can be calculated by the following:

(21)

If the incident angle exceeds bcr, the reflection
angle of SP wave will become a complex number,
which makes it that the SP wave becomes a kind of
inhomogeneous wave. Similarly, the inhomogeneous
SP wave cannot satisfy the free boundary conditions
when propagating independently along the boundary.
But it cannot radiate Head wave, because in this case
the inhomogeneous SP wave is a kind of surface wave,
which means that its energy cannot leave the surface.
In this case, the inhomogeneous SP wave will turn into
Rayleigh wave in order to satisfy the free boundary
conditions. So, the inhomogeneous SP wave cannot
be observed on the boundary.
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Fig. 6. Distribution of wavefronts of various waves when
SV wave is incident within bcr.
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Fig. 7. Distribution of wavefronts of various waves when
SV wave is incident exceeding bcr.
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So, as shown in Fig. 5b, only the SP wave reflected
by SV wave incident at the incident angle bcr can prop-
agate along the boundary, and radiate Head wave.

And there is a minimum horizontal distance from
the source to the receiver for the SP wave being
formed:

(22)

For the medium parameters in this paper, the critical
angle bcr is 32.97° and rmin is 25.95 mm. So, there is no
SP wave at the point A with horizontal distance 20 mm.
However, at the point B, whose horizontal distance is
500 mm, the SP wave can be observed.

Therefore, it can be confirmed that the packets in
the full waveforms at the surface should be the direct P
wave and the direct SV wave if the horizontal distance
from the source to the receiver is less than rmin , and be
the direct P wave, the SP wave, direct SV wave, and
the Rayleigh waves if the horizontal distance from the
source to the receiver is greater than rmin.

Then, the wavefront distribution in space for each
packet is analyzed. It is considered in two cases: the SV
wave is incident to the boundary within the critical
angle and exceeding the critical angle. The distribu-
tion of wavefronts of various wave packets in two cases
is plotted in Figs. 6 and 7, respectively.

Figure 6 gives the distribution of all wavefronts at
the same time when the SV wave is incident to the sur-
face with incident angle b < bcr. As shown in Fig. 6, the
direct P wave firstly arrives with wavefront the Arc
GMF. The P wave reaches the surface and generates
the reflected P wave (Arc GKF) and the converted SV
wave (Arc GJF). Then the direct SV wave arrives at the
surface with wavefront Arc DLC. Similarly, it generates
the reflected SV wave (Arc DVC) and the converted P
wave (Arc DHC). This result matches the mathemati-
cal expressions perfectly. As shown in Eqs. (14), (16)
and (18), each displacement potential includes three

min crtan .sr b z=
ACOUSTICAL PHYSICS  Vol. 65  No. 3  2019
parts: the direct wave, the reflected wave, and the con-
verted wave.

Figure 7 depicts the distribution of all wavefronts at
the same time in which the SV wave is incident to the
surface with incident angle b > bcr. In this case, not
only the wavefronts with Arc GMF, GKF, GJF, DLC,
and DVC are the same as that in Fig. 6, but also the SP
wave (points E, Q) and Rayleigh wave (black area in
Fig. 7) should be generated. However, because the
propagation velocity of the SP wave is greater than that
of the SV wave, the wavefront of reflected P wave is
separated from that of the SV wave. In Fig. 7, the
wavefront of reflected P wave is EHQ.

It had been shown that only the SP wave can be
generated and propagated along the surface when the
SV wave is incident to the surface with the critical
angle bcr. The Head wave (tangent segment EN and
QR) [24–27] could be generated as the SP wave prop-
agated along the surface. When the SV wave is incident
to the boundary exceeding the critical angle, the inho-
mogeneous SP wave is generated but instantaneously
form the Rayleigh wave due to the free boundary con-
ditions. So, the inhomogeneous SP wave cannot be
observed.

B. The Relationship between Intensity of Rayleigh Wave 
and the Source Depth

The excitation intensity of the Rayleigh wave in
Fig. 4b is relatively weak because the source depth is
too deep compared with the wavelength of the
Rayleigh wave. If the source depth is decreased, the
displacement waveforms at point B will be increases sig-
nificantly. Figure 8 gives a typical example of the Rayleigh
wave, in which case the depth of source is 10 mm.

As shown in Fig. 8, the intensity of the Rayleigh
wave is significantly improved in this case. Obviously,
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Fig. 8. The displacement waveforms of point B with the
source depth of 10 mm.
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Fig. 9. Relationship of the Rayleigh wave intensity to ratio
of source depth to wavelength.
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Fig. 10. Schematic of the azimuth angle of observation
point.
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Fig. 11. The relationship of intensity of each wave to the
direction of force.
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the intensity of the Rayleigh wave is closely related to
the ratio of the source depth to wavelength of the
Rayleigh wave. Through numerical simulation, the
relationship between them is plotted in Fig. 9.

As shown in Fig. 9, intensity of the Rayleigh wave
is maximum on the surface and decays rapidly with the
source depth increases. It can be found that most of
energy of the Rayleigh wave is within a wavelength
range below the surface.

II. The Single Force with Different Direction
Here, the relationships of intensity of each wave on

the surface to the direction of single force are studied.
It is convienent to introduce the angle η to represent
the azimuth angle of observation point (Fig. 10).

Only the acoustical field in the plane θ = 0 is con-
sidered. The single force source is set at a depth of
30 mm with the direction angle ξ. The intensity of
each wave is obviously related to the direction angle ξ
of the single force. Figure 11 displays the relationship
of intensity of the P wave, SP wave, SV wave, and
Rayleigh wave on the surface to the direction angle ξ,
respectively. The intensity of each wave is represented
by the total particle displacement and normalized by
its maximum.

The azimuth angle η of point B can be calculated to
be about 86.5° with the medium paremeters in this
paper. And the location of η and bcr are also given in
Fig. 11.

Some interesting conclusions can be obtained from
Fig. 11, namely:

(1) When ξ = η, the SV wave cannot be observed at
the observation point, but the intensity of P wave
reaches its maximum. Besides, when ξ = η + π/2, the
ACOUSTICAL PHYSICS  Vol. 65  No. 3  2019
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Fig. 12. Sketch of wave propagating on two special paths.
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Fig. 13. Sketch of wave propagating in two special cases: (a) ξ = η, (b) ξ = η + π/2.
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P wave cannot be observed at the observation point,
but the intensity of SV wave reaches its maximum.

In Fig. 12, the dotted line are two propagation
paths of wave. The path 1 is in the direction of the sin-
gle force, and the path 2 is perpendicular to the direc-
tion of the single force. In Fig. 12a, according to for-
mulas (7), (16) and (18), it can be proved that the par-
ticle displacements on two propagation paths satisfy

(23)

Formula (23) shows that only the P wave can propa-
gate on path 1, and only the SV wave can propagate on
path 2, as shown in Fig. 12b.

1|| 1 2|| 20,  0, 0,  0.u u u u⊥ ⊥≠ = = ≠
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It can be concluded that on the propagation path in
the direction of the single force, only P wave can prop-
agate. Similarly, on the propagation path perpendicu-
lar to the direction of the single force, only SV wave
can propagate.

So, as shown in Fig. 13a, when ξ = η, only the P
wave can be observed at the observation point. In
Fig. 13b, when ξ = η + π/2, only the SV wave can be
observed at the observation point.

(2) The most peculiar case is, when ξ = bcr, the SP
wave cannot be observed anywhere on the boundary.
Because only the SP wave reflected by SV wave inci-
dent at the incident angle bcr can propagate along the
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Fig. 14. Sketch of SP wave not being formed.
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boundary. But as shown in Fig. 14a, when ξ = bcr,
there is no SV wave propagating on the propagation
path in the direction of the single force. So, in this
case, the SP wave cannot be formed. (The point Y is
the critical point where the SP wave can be formed,
not the observation point).

As shown in Fig. 14b, the single force source is set
at a depth of 15 mm with the direction angle ξ = bcr.
And the observation point B is set at a horizontal dis-
tance of 500 mm from the origin. Then the particle
displacements at point B are given in Fig. 15.

In Fig. 15, the SP wave cannot be observed on the
boundary, compared with the displacement wave-
forms in Fig. 8.
Fig. 15. The particle displacement waveforms at point B
with ξ = bcr.
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(3) The intensity curve of the Rayleigh wave is very
similar to that of SV wave, it shows that the energy of
the Rayleigh wave may originate mainly from the SV
wave. But the minimum intensity of the Rayleigh wave
is not zero, which shows that the energy of the
Rayleigh wave originates from the inhomogeneous SP
wave, not the SP wave being observed on the boundary
or the reflected SV wave.

3. CONCLUSIONS

With the advantage of B, P, C coordinate system,
the mathematical expressions of acoustic field excited
by the single force with arbitrary direction in semi-
infinite elastic space are obtained in this paper. It is
shown by the mathematical expressions that the P
wave or SV wave cannot satisfy the free boundary con-
ditions in the semi-infinite elastic space inde-
pendently. In order to satisfy the free boundary condi-
tions, the P wave or SV wave generates not only
reflected wave but also converted wave when they
reach the boundary. It is found by numerical simula-
tion that there are several kinds of waves in the semi-
infinite elastic space: direct P wave, direct SV wave, SP
wave propagating along the free surface which can
generate Head wave and Rayleigh wave. Then, the
relationships of the direction of single force to the
excitation intensity of each wave on the free surface are
deeply studied. It is found that on the propagation
path in the direction of the single force, only P wave
can propagate. And on the propagation path perpen-
dicular to the direction of the single force, only SV
wave can propagate. It is also found that the SP wave
cannot be observed anywhere on the boundary when
the direction of single force (ξ) is equal to the critical
reflection angle (bcr). Interestingly, it can be specu-
lated that the energy of the Rayleigh wave may origi-
ACOUSTICAL PHYSICS  Vol. 65  No. 3  2019
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nate mainly from the SV wave, more precisely the
inhomogeneous SP wave converted by the SV wave.
Besides, the relationship of the Rayleigh wave inten-
sity to ratio of source depth to wavelength is obtained.
The Rayleigh wave decays rapidly as the source depth
increases.

ACKNOWLEDGMENTS
The study was supported by the National Natural

Science Foundation of China (nos. 11774377,
11574343, 11474308).

REFERENCES
1. F. R. Breckenridge, C. E. Tschiegg, and M. Greenspan,

J. Acoust. Soc. Am. 57 (3), 626 (1975).
2. A. Mourad and M. Deschamps, J. Acoust. Soc. Am. 97

(5), 3194 (1995).
3. M. Spies, J. Acoust. Soc. Am. 102 (4), 2438 (1997).
4. A. Moura, J. Acoust. Soc. Am. 127 (3), 1185 (2010).
5. S. V. Kuznetsov and E. O. Terentjeva, Acoust. Phys. 61

(3), 356 (2015).
6. A. E. Love, Proc. London Math. Soc. 1, 291 (1904).
7. T. Matuzawa, J. Astron. Geophys. 4, 1 (1926).
8. R. Sato, J. Phys. Earth 17, 101 (1969).
9. I. Onda, S. Komaki, and M. Ichikawa, J. Phys. Earth

23, 205 (1975).
10. Yu. V. Petukhov, A. V. Razin, and V. A. Razin, Acoust.

Phys. 55(3), 425 (2009).
11. W. M. Ewing, W. S. Jardetsky, and F. Press, Phys.

Today 10 (12), 27 (1957). W. M. Ewing, W. S. Jardetsky,

and F. Press, Elastic Waves in Layered Media
(McGraw-Hill, New York, 1957).

12. M. Yu. Dvoesherstov, V. A. Savin, and V. I. Cherednik,
Acoust. Phys. 47 (6), 682 (2001).

13. M. A. Kulesh, E. F. Grekova, and I. N. Shardakov,
Acoust. Phys. 55 (2), 218 (2009).

14. M. G. Markov, I. A. Markova, and S. N. Sadovnichiy,
Acoust. Phys. 56 (3), 299 (2010).

15. V. F. Dmitriev and A. N. Noskov, Acoust. Phys. 56 (4),
475 (2010).

16. A. D. Lapin, Acoust. Phys. 50 (2), 192 (2004).
17. A. I. Korobov, Yu. A. Brazhkin, and E. S. Sovetskaya,

Acoust. Phys. 56 (4), 446 (2010).
18. V. A. Gusev and O. V. Rudenko, Acoust. Phys. 56 (6),

861 (2010).
19. C. Han-yin, J. Trevelyan, and S. Johnstone, J. Acoust.

Soc. Am. 130 (1), EL44 (2011).
20. C. Han-yin, Z. Bi-Xing, S. Johnstone, and J. Trevel-

yan, J. Acoust. Soc. Am. 131 (3), 2048 (2012).
21. A. Ben-Menahem and S. J. Singh, Bull. Seismol. Soc.

Am. 58, 1519 (1968).
22. Y. Zhen-Xing, Acta Geophys. Sin. 22, 181 (1979).
23. Z. Bi-Xing, M. Yu, C. Q. Lan, and W. Xiong, J. Acoust.

Soc. Am. 100 (6), 3527 (1996).
24. N. L. Batanova, A. V. Golenishchev-Kutuzov,

V. A. Golenishchev-Kutuzov, and R. I. Kalimullin,
Acoust. Phys. 50 (5), 496 (2004).

25. Yu. M. Zaslavskii, B. V. Kerzhakov, and V. V. Kulinich,
Acoust. Phys. 51 (5), 554 (2005).

26. Yu. M. Zaslavskii and V. Yu. Zaslavskii, Acoust. Phys.
55 (6), 910 (2009).

27. L. S. Zagorskii and V. L. Shkuratnik, Acoust. Phys. 59
(2), 197 (2013).
ACOUSTICAL PHYSICS  Vol. 65  No. 3  2019


	1. INTRODUCTION
	2. PROBLEM STATEMENT
	2.1. Introduction of B, P, C Coordinate System
	2.2. The Acoustic Field Response
	2.3. The Acoustic Field Excited by a Single Force with Arbitrary Direction
	2.4. Numerical Simulation and Propagation Characteristic of Each Wave Packet
	I. The Simplest Case: a Vertical Single Force (x = 90°)

	A. Analysis of the Packets in Full Waveforms
	B. The Relationship between Intensity of Rayleigh Wave and the Source Depth
	II. The Single Force with Different Direction

	3. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

		2019-05-30T14:58:43+0300
	Preflight Ticket Signature




